
Appendix - Verifying Safety and Accuracy of Approximate
Parallel Programs via Canonical Sequentialization

VIMUTH FERNANDO, University of Illinois at Urbana-Champaign, USA

KEYUR JOSHI, University of Illinois at Urbana-Champaign, USA

SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA

We present Parallely, a programming language and a system for verification of approximations in parallel

message-passing programs. Parallely’s language can express various software and hardware level approxima-

tions that reduce the computation and communication overheads at the cost of result accuracy.

Parallely’s safety analysis can prove the absence of deadlocks in approximate computations and its type

system can ensure that approximate values do not interfere with precise values. Parallely’s quantitative

accuracy analysis can reason about the frequency and magnitude of error. To support such analyses, Parallely

presents an approximation-aware version of canonical sequentialization, a recently proposed verification

technique that generates sequential programs that capture the semantics of well-structured parallel programs

(i.e., ones that satisfy a symmetric nondeterminism property). To the best of our knowledge, Parallely is the

first system designed to analyze parallel approximate programs.

We demonstrate the effectiveness of Parallely on eight benchmark applications from the domains of graph

analytics, image processing, and numerical analysis. We also encode and study five approximation mechanisms

from literature. Our implementation of Parallely automatically and efficiently proves type safety, reliability,

and accuracy properties of the approximate benchmarks.

CCS Concepts: • Computing methodologies → Parallel programming languages; • Software and its
engineering → Formal software verification.

Additional Key Words and Phrases: Approximate Computing, Reliability, Accuracy, Safety

ACM Reference Format:
Vimuth Fernando, Keyur Joshi, and Sasa Misailovic. 2019. Appendix - Verifying Safety and Accuracy of Approx-

imate Parallel Programs via Canonical Sequentialization. Proc. ACM Program. Lang. 3, OOPSLA (October 2019),

26 pages. https://doi.org/10.1145/3360545

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART

https://doi.org/10.1145/3360545

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: October 2019.

https://doi.org/10.1145/3360545
https://doi.org/10.1145/3360545

APPENDIX A
In this appendix we present the full syntax semantics, and type rules for our language. In addition

we provide the proofs for the properties stated in the paper.

1 DEFINITIONS
Figure 1 shows the syntax of the language. In this section we define key terms and the key definitions.

References. A reference is a pair ⟨nb , ⟨n1, ...,nk ⟩⟩ ∈ Ref that consists of a base address nb ∈ Loc
and a dimension descriptor ⟨n1, ...,nk ⟩. References describe the location and the dimension of

variables in the heap.

Frames, Stacks, andHeaps. A frame σ is an element of the domain E = Var → Ref which is the

set of finite maps from program variables to references. A heap h ∈ H = N→ N∪F∪{∅} is a finite

map from addresses (integers) to values. Values can be an Integer, Float or the special empty message (∅).

Processes. Individual processes execute their statements in sequential order. Each process has a

unique process identifier (Pid). Processes can refer to each other using the process identifier. We

do not discuss process creation and removal. We assume that the processes have disjoint variable

sets of variable names. We write <pid>.<var> to refer to variable <var> of process <pid>. When

unambiguous, we will omit <pid> and just write <var>.

Types. Types in Parallely are either precise (meaning that no approximation can be applied

to them) and approximate. Parallely supports integer and floating-point scalars and arrays with

different levels of precision.

Typed Channels and Message Orders. Processes communicate by sending and receiving

messages over a typed channel. There is a separate subchannel for each pair of processes further

split by the type of message. µ ∈ Channel = Pid × Pid × Type → Val∗. Messages on the same

subchannel are delivered in order but there are no guarantees for messages sent on separate

(sub)channels.

Programs. We define a program as a parallel composition of processes. We denote a program

as P = [P]1 ∥ · · · ∥ [P]i ∥ · · · ∥ [P]n . Where 1 . . .n are process identifiers. An approximated

program executes within approximation model,ψ , which in general may contain the parameters for

approximation (e.g., probability of selecting original or approximate expression). We define special

reliable model 1ψ , which evaluates the program without approximations.

Global and Local Environments. Each process works on its private environment consisting of a

frame and a heap, ⟨σ i ,hi ⟩ ∈ Λ = H × E. We define a global configuration as a triple ⟨P , ϵ, µ⟩ of a
program, global environment, and a channel. The global environment is a map from the process

identifiers to the local environment ϵ ∈ Env = Pid 7→ Λ.

Scheduler Distributions. Ps (i | ⟨P , ϵ, µ⟩) models the probability that the thread with id i is sched-
uled next. We define it history-less and independent of ϵ contents. For reliability analysis we assume

a fair scheduler that in each step has a positive probability for all threads that can take a step in the

program.

We make the following assumptions for the reliability analysis to ensure that the scheduler is

fair. (The remaining analyses do not take into account this distribution).

(1) ∀ϵ, µ . ∑α ∈T id P(α |(P , ϵ, µ)) = 1

(2) ∀P , ϵ, µ . ∀α . P(α |(P , ϵ, µ)) > 0 iff ∃ P ′, ϵ ′µ ′ s.t. (ϵ, µ, P)
α,p
−→ψ (ϵ ′, µ ′, P ′)

2

n ∈ N quantities
m ∈ N ∪ F ∪ {∅} values
x ,b,X ∈ Var variables
a ∈ ArrVar array variables
α , β ∈ Pid process ids

Exp → m | x | f (Exp∗) | expressions
(Exp) | Exp op Exp

q → precise | approx type qualifiers
t → int<n> | float<n> basic types
T → q t | q t [] types
D → T x | T a[n+] | variable

D;D declarations

P → [D; S]α | process
Π.α : X [D; S]α | process group
P ∥ P process composition

S →

skip empty program
| x = Exp assignment
| x = Exp [r] Exp probabilistic choice
| x = b? Exp : Exp conditional choice
| S;S sequence
| x = a[Exp+] array load
| a[Exp+] = Exp array store
| if x S S branching
| repeat n {S} repeat n times
| x = (T)Exp cast
| for i : [Pid+]{S} iterate over processes
| send(α , T , x) send message
| x = receive(α , T) receive a message
| cond-send(b,α , T , x) conditionally send
| b,x = cond-receive(α , T) receive from a

cond-send

Fig. 1. Parallely syntax

E-Var-C

⟨nb, ⟨1⟩⟩ = σ (x)

⟨x, σ , h ⟩⇁ψ ⟨h(nb), σ , h ⟩

E-Var-F

⟨nb, ⟨1⟩⟩ = σ (x)

⟨x, σ , h ⟩ 1

⇁ψ ⟨nf , σ , h ⟩

E-Iop-R1

⟨e1, σ , h ⟩
p

⇁ψ ⟨e′
1
, σ , h ⟩

⟨e1 op e2, σ , h ⟩
p

⇁ψ ⟨e′
1
op e2, σ , h ⟩

E-Iop-R2

⟨e2, σ , h ⟩
p

⇁ψ ⟨e′
2
, σ , h ⟩

⟨n op e2, σ , h ⟩
p

⇁ψ ⟨n op e′
2
, σ , h ⟩

E-Iop-C

⟨n1 op n2, σ , h ⟩
1

⇁ψ ⟨op(n1, n2), σ , h ⟩

Fig. 2. Dynamic Semantics of Expressions

Dec-Var

⟨nb, h
′⟩ = new(h, ⟨1⟩)

⟨T x, σ :: σ , h, µ ⟩ 1

⇁ψ ⟨skip, σ [x 7→ ⟨nb, ⟨1⟩m ⟩] :: σ , h′, µ ⟩

Dec-Array

∀i .0 < ni ⟨nb, h
′⟩ = new(h,m, ⟨n1 ...nk ⟩) σ ′ = σ [x 7→ ⟨nb, ⟨n1 ..nk ⟩m ⟩]

⟨T x[n1 ...nk], σ :: σ , h, µ ⟩ 1

⇁ψ ⟨skip, σ ′
:: σ , h′, µ ⟩

Fig. 3. Semantics of Declarations

2 LANGUAGE SEMANTICS
Figure 2 defines the semantics for expressions. Figures 3, 5, and 4 define the semantics for a single

process running sequentially. Figure 6 presents the global semantics of a parallel program.

3

E-Assign-R

⟨e, σ , h ⟩
p

⇁ψ ⟨e′, σ , h ⟩

⟨x = e, σ , h, µ ⟩
p

⇁ψ ⟨x = e′, σ , h, µ ⟩

E-Assign-C

⟨nb, ⟨1⟩⟩ = σ (x)

⟨x = n, σ , h, µ ⟩ 1

⇁ψ ⟨skip, σ , h[nb 7→ n], µ ⟩

E-Assign-Prob-True

⟨x = e1 [r] e2, σ , h, µ ⟩
r

⇁ψ ⟨x = e1, σ , h, µ ⟩

E-Assign-Prob-False

⟨x = e1 [r] e2, σ , h, µ ⟩
1−r
⇁ψ ⟨x = e2, σ , h, µ ⟩

E-Assign-Approx-True

⟨l, ⟨1⟩⟩ = σ (b) h[l] , 0

⟨x = e1 [b] e2, σ , h, µ ⟩
1

⇁ψ ⟨x = e1, σ , h, µ ⟩

E-Assign-Approx-True

⟨l, ⟨1⟩⟩ = σ (b) h[l] = 0

⟨x = e1 [b] e2, σ , h, µ ⟩
1

⇁ψ ⟨x = e2, σ , h, µ ⟩

E-Seq-R1

⟨s1, σ , h, µ ⟩
p

⇁ψ ⟨s′
1
, σ ′, h′, µ′⟩

⟨s1;s2, σ , h, µ ⟩
p

⇁ψ ⟨s′
1
;s2, σ ′, h′, µ′⟩

E-Seq-R2

⟨skip;s2, σ , h, µ ⟩
1

⇁ψ ⟨s2, σ , h, µ ⟩

E-If-True

⟨nb, ⟨1⟩⟩ = σ (x) h[nb] , 0

⟨if x s1 s2, σ , h, µ ⟩
1

⇁ψ ⟨s1, σ , h, µ ⟩

E-If-False

⟨nb, ⟨1⟩⟩ = σ (x) h[nb] = 0

⟨if x s1 s2, σ , h, µ ⟩
1

⇁ψ ⟨s2, σ , h, µ ⟩

E-Send

isPid (β) ⟨nb, ⟨1⟩⟩ = σ (y) h[nb] = n µ[⟨α, β, t ⟩] =m

⟨[send(β, t, y)]α , σ , h, µ ⟩
1

⇁ψ ⟨skip, σ , h, µ[⟨α, β, t ⟩ 7→m + +n]⟩

E-Receive

µ[(β = w) ∨ (β ∈ w) ⟨β, α, t ⟩] =m :: n ⟨nb, ⟨1⟩⟩ = σ (x)

⟨[x = receive(w, t)]α , σ , h, µ ⟩
p

⇁ψ ⟨skip, σ , h[nb 7→ v], µ[⟨β, α, t ⟩ 7→ n]⟩

E-CondSend-True

⟨l, ⟨1⟩⟩ = σ (b) h[l] , 0 isPid (β)
⟨nb, ⟨1⟩⟩ = σ (y) h[nb] = v µ[⟨α, β, t ⟩] =m

⟨[cond-send(b, β, t, y)]α , σ , h, µ ⟩
1

⇁ψ ⟨skip, σ , h, µ[⟨α, β, t ⟩ 7→m + +n]⟩

E-CondSend-False

⟨l, ⟨1⟩⟩ = σ (b) h[l] = 0 isPid (β) µ[⟨α, β, t ⟩] =m

⟨[cond-send(b, β, t, y)]α , σ , h, µ ⟩
1

⇁ψ ⟨skip, σ , h, µ[⟨α, β, t ⟩ 7→m + +∅]⟩

E-CondReceive-True

µ[⟨β, α, t ⟩] =m :: n (β = w) ∨ (β ∈ w) ⟨n1, ⟨1⟩⟩ = σ (x) ⟨n2, ⟨1⟩⟩ = σ (b)

⟨[b, x = cond-receive(β, t)]α , σ , h, µ ⟩
1

⇁ψ ⟨skip, σ , h[n1 7→ v][n2 7→ 1], µ[⟨β, α, t ⟩ 7→ n]⟩

E-CondReceive-False

µ[⟨β, α, t ⟩] = ∅ ::m (β = w) ∨ (β ∈ w) ⟨nb, ⟨1⟩⟩ = σ (b)

⟨[b, x = cond-receive(β, t)]α , σ , h, µ ⟩
1

⇁ψ ⟨skip, σ , h[nb 7→ 0], µ[⟨β, α, t ⟩ 7→m]⟩

E-Cast-R

⟨e, σ , h ⟩
p

⇁ψ ⟨e′, σ , h ⟩

⟨x = (T)e, σ , h, µ ⟩
p

⇁ψ ⟨x = (T)e′, σ , h, µ ⟩

E-Cast-C

n′ = convert(T , n) ⟨nb, ⟨1⟩⟩ = σ (x)

⟨x = (T)n, σ , h, µ ⟩ 1

⇁ψ ⟨skip, σ , h[nb 7→ n′], µ ⟩

E-Par-Iter

⟨for i : [α1 ...αk]{S }, σ , h, µ ⟩
1

−→ψ
⟨S [α1/i]; . . . ; S [αk /i], σ , h, µ ⟩

Fig. 4. Sequential Semantics of Statements

4

E-Array-Load-Idx

⟨ei , σ , h ⟩
p

⇁ψ ⟨e′i , σ , h ⟩

⟨x = a[n1, ..., ei , ..., ek], σ , h, µ ⟩
p

−→ψ
⟨x = a[n1, ..., e′i , ..., ek], σ , h, µ ⟩

E-Array-Load-C

⟨nb, ⟨l1, ..., lk ⟩⟩ = σ (x) no = lk + Σk−1i=0 ni · li n = h(nb + no)

⟨x = a[n1, ..., nk], σ , h, µ ⟩
p

⇁ψ ⟨x = n, σ , h, µ ⟩

E-Array-Store-Idx

⟨ei , σ , h ⟩
p

⇁ψ ⟨e′i , σ , h ⟩

⟨a[n1, ..., ei , ..., ek] = x, σ , h, µ ⟩
p

⇁ψ ⟨a[n1, ..., e′i , ..., ek] = x, σ , h, µ ⟩

E-Array-Store-C

⟨nb, ⟨l1, ..., lk ⟩⟩ = σ (x) no = lk + Σk−1i=0 ni · li
⟨n′b, ⟨1⟩⟩ = σ (x) h[n′b] = v ψ (wr(m)) = 1

⟨a[n1, ..., nk] = x, σ , h, µ ⟩
1

⇁ψ ⟨skip, σ , h[(nb + no) 7→ v], µ ⟩

Fig. 5. Sequential Semantics of Arrays

GLOBAL-STEP

ps = Ps [α | (ϵ, µ, Pi ∥ Pj)] E[α] = ⟨σ , h ⟩ ⟨Pα , σ , h, µ ⟩
p

⇁ψ ⟨P ′
α , σ

′, h′, µ′⟩ p′ = p · ps

(ϵ, µ, Pα ∥ Pβ)
α ,p′
−→ψ (ϵ [i 7→ ⟨σ ′, h′⟩], µ′, P ′

α ∥ Pβ)

Fig. 6. Global Semantics

E-Assign-Prob-Exact

⟨x = e1 [r] e2, σ , h, µ ⟩
1

⇁1ψ ⟨x = e1, σ , h, µ ⟩

E-Cast-Exact

⟨x = (T)e, σ , h, µ ⟩ 1

⇁1ψ ⟨x = e, σ , h, µ ⟩

Fig. 7. Exact Execution Semantics of Statements (Selection)

5

TR-Val

type(n) = t

Θ ⊢ n : precise t

TR-Var

Θ(x) = T

Θ ⊢ x : T

TR-Iop

Θ ⊢ e1 : T Θ ⊢ e2 : T

Θ ⊢ e1 op e2 : T

TR-Iop-approx

Θ ⊢ e1 : q t Θ ⊢ e2 : q′ t

Θ ⊢ e1 op e2 : approx t

Fig. 8. Types for Integer Expressions

TR-Skip

Θ ⊢ skip : Θ

TR-Var

Θ ⊢ x : T Θ ⊢ e : Θ

Θ ⊢ x = e : Θ

TR-Var2

Θ ⊢ x : approx t Θ ⊢ e : q t

Θ ⊢ x = e : Θ

TR-Prob

Θ ⊢ e1 : q t Θ ⊢ e2 : q′ t Θ ⊢ x : approx t

Θ ⊢ x = e1 [p] e2 : Θ

TR-ApproxAssign

Θ ⊢ e1 : q t Θ ⊢ e2 : q′ t Θ ⊢ x : approx t Θ ⊢ b : q′′ int

Θ ⊢ x = e1 [b] e2 : Θ

TR-SEQ

Θ ⊢ s1 : Θ Θ ⊢ s2 : Θ

Θ ⊢ s1; s2 : Θ

TR-If

Θ ⊢ b : precise int

Θ ⊢ if b s1 s2 : Θ

TR-Array-load

Θ ⊢ e1 : precise int ... Θ ⊢ ek : precise int
Θ ⊢ a : q t [] Θ ⊢ x : q t

Θ ⊢ x = a[e1 ...ek] : Θ

TR-Array-load2

Θ ⊢ e1 : precise int ... Θ ⊢ ek : precise int
Θ ⊢ a : q t [] Θ ⊢ x : approx t

Θ ⊢ x = a[e1 ...ek] : Θ

TR-Array-store

Θ ⊢ e1 : precise int ... Θ ⊢ ek : precise int
Θ ⊢ a : q t [] Θ ⊢ e : q t

Θ ⊢ a[e1 ...ek] = e : Θ

TR-Array-store2

Θ ⊢ e1 : precise int ... Θ ⊢ ek : precise int
Θ ⊢ a : approx t [] Θ ⊢ e : q t

Θ ⊢ a[e1 ...ek] = e : Θ

TR-Send

Θ ⊢ y : T

Θ ⊢ send(q, T, y) : Θ

TR-Receive

Θ ⊢ x : T

Θ ⊢ x = receive(q, T) : Θ

TR-CondSend

Θ ⊢ b : precise int Θ ⊢ y : approx t T = approx t

Θ ⊢ cond-send(b, q, T, y) : Θ

TR-CondReceive

Θ ⊢ x : approx t T = approx t Θ ⊢ b : approx int

Θ ⊢ b, x = cond-receive(q, T) : Θ

TR-Cast

Θ ⊢ x : approx t Θ ⊢ e : q′ t

Θ ⊢ x = (q t) e : Θ

Fig. 9. Types for Statements

APPENDIX B
3 NON-INTERFERENCE

Equality. We use similar definitions as in EnerJ [3].

We use � to denote equality disregarding approximate values for values, environments and heaps.

For primitive values, v � v ′
iff they have the same type q T and either q is approx or v = v ′

. For

heaps h � h′
iff they have the same set of addressesM and ∀m ∈ M . h(m) � h′(m) (Similarly for

the frames, stacks).

We use the same definition for channels, µ � µ ′ if domain(µ) = domain(µ ′) and ∀(p,q, precise t) ∈
domain(µ) µ[(p,q, precise t)] = µ ′(p,q, precise t)

6

3.1 Sequential Non-Interference
If Θ ⊢ s : Θ, ⟨s, σs ,hs , µs ⟩ ⇁ψ ⟨s ′, σf ,hf , µf ⟩ , σs � σ

′
s , hs � h′

s , and µs � µ ′s Then there exists,

(σ ′
f , h

′
f , µ

′
f) s.t. ⟨s, σ ′

s ,h
′
s , µ

′
s ⟩ ⇁ψ ⟨s ′, σ ′

f ,h
′
f , µ

′
f ⟩ and σf � σ

′
f , hf � h′

f , and µs � µ
′
s

Proof. We will use rule induction on the semantics.

Case 1: E-ASSIGN-R
The environment is not modified. So, hs = hf and h

′
s = h

′
f . As, hs � h′

s we can trivially say hf � h′
f .

Same argument holds for the stack and mail box.

Case 2: E-ASSIGN-C
The stack and the channel does not change.

From assumption Θ ⊢ x = n : Θ, therefore either both x and n both have the same type, or

Θ ⊢ x : approx t and Θ ⊢ n : q t . In the first case, If both x and n are approx then, hs � hf by

definition as only the approximate value changes and the property holds. If both values are precise

they will be the same in hs and h
′
s and we can take the same step. In the second case, x is approx

and n is precise. Again in this case only approx values in the heap will change.

Case 3: E-Assign-Prob-True and E-Assign-Prob-False

The type rule TR-Prob ensures that the assigned variable is approximate. Therefore only the

approximate regions of the environment changes and the property holds.

Case 4: E-SEQ-R1, E-SEQ-R2
Follows directly from the inductive hypothesis.

Case 5: E-If, E-If-True, E-If-False
In the case of rule E-If, The environment does not change and the property is satisfied trivially and

since Θ ⊢ if b s1 s2 : Θ we know Θ ⊢ b : precise int therefore, the guard evaluates to the same

value in both ⟨σs ,hs , µs ⟩ and ⟨σ ′
s ,h

′
s , µ

′
s ⟩ and takes the same branch. In the case of rules E-If-True

and E-If-False the property follows from the inductive hypothesis.

Case 6: E-ARRAY-LOAD-IDX, E-ARRAY-LOAD-C
In E-ARRAY-LOAD-IDX the environment does not change. As Θ ⊢ x = a[e1...ek] : Θ. All ei has
precise type. Therefore all array indices will evaluate to the same value in ⟨σ ′

s ,h
′
s , µ

′
s ⟩. In addition

if Θ ⊢ x : approx t then hf � hs and the property holds.

Similarly, if Θ ⊢ x : precise t then Θ ⊢ a : precise t and the resultant value n will be the same in

both hs and h
′
s resulting in the same update to heap.

Case 7: E-ARRAY-STORE-IDX, E-Array-Store-C
As Θ ⊢ a[e1...ek] = x : Θ. As in the previous case, all ei has precise type. Therefore all array indices
will evaluate to the same value in ⟨σ ′

s ,h
′
s , µ

′
s ⟩. In addition if Θ ⊢ x : approx t , then Θ ⊢ a : approx t

and hf � hs and the property holds.

Similarly, if Θ ⊢ x : precise t then Θ ⊢ x : precise t and the resultant value n will be the same in

both hs and h
′
s resulting in the same update to heap.

Case 8: E-SEND
As Θ ⊢ send(Pid, T , v) : Θ, v has the type T. If T is a approx type only the approximate part of the

mailbox changes and the property holds. If T is precise, type safety also ensures that v has precise

type and will evaluate to the same value under ⟨σ ′
s ,h

′
s , µ

′
s ⟩ resulting in a equivalent environment.

Case 9: E-Receive
As Θ ⊢ receive(Pid, T) : Θ, x has some type T . If x is an approx type only the approximate part of

7

the mailbox and environment changes and the property holds. If T is precise, the precise part of the

mailbox is accessed, and the value in ⟨σ ′
s ,h

′
s , µ

′
s ⟩ will be the same, therefore the final environment

will be the same for any equivalent start environment.

Case 10: E-CONDRECEIVE-TRUE, E-CONDRECEIVE-FALSE
In the case of E-CONDRECEIVE-TRUE the behavior is similar to E-Receive. But since Θ ⊢

x = cond-receive(Pid, T) : Θ, T = approx t . Therefore the only change in the channel is to

µ(α , β, approx t) therefore µs � µf . Similarly, since Θ ⊢ x : approxt , hs � hf .
Same argument for E-CONDRECEIVE-FALSE. In this case the heap and stack does not change.

Case 11: E-Cast-R and E-Cast-E

The type rule TR-Cast ensures that the assigned variable is approximate. Therefore only the

approximate regions of the environment changes and the property holds.

3.2 Distributed Noninterference
Concurrent Non-interference says that if each individual process in the program was well typed

then the parallel program has similar noninterference property guaranteed.

Theorem 1 (Parallel Non-Interference). Suppose Pi ∥ Pj is well typed underΘ and ∀ϵ, ϵ ′, ϵf ∈

Env and µ, µ, µf ∈ Channel, such that, ⟨ϵ, µ⟩ � ⟨ϵ ′, µ ′⟩, if (ϵ, µ, Pi ∥ Pj)−→ψ (ϵf , µf , P
′
i ∥ Pj) , then

there exists ϵ ′f ∈ Env and µ ′f ∈ Channel such that (ϵ ′, µ ′, Pi ∥ Pj)−→ψ (ϵ ′f , µ
′
f , P

′
i ∥ Pj) and ⟨ϵf , µf ⟩

� ⟨ϵ ′f , µ
′
f ⟩

proof. If (ϵ, µ, Pi ∥ Pj)−→ψ (ϵf , µf , P
′
i ∥ Pj) then from the semantics of global execution we can

see that there exist i such that ϵ[i] = ⟨σ ,h⟩ and ⟨Pi , σ ,h, µ⟩ ⇁ ⟨P ′
i , σf ,hf , µf ⟩ .

From sequential non-interference we know that For any σ ′ � σ , h′ � h, and µ ′ � µ there exists
(σ ′

f , h
′
f , µ

′
f) s.t. ⟨s, σ ′,h′, µ ′⟩ ⇁ ⟨s ′, σ ′

f ,h
′
f , µ

′
f ⟩ and σf � σ

′
f , hf � h′

f , and µ � µ
′
f

So we can consider ϵ ′, where ϵ ′ = ϵ[i 7→ ⟨σ ′,h′⟩] Consider the same transition as before, We will

end up at ϵ ′f = ϵf [i 7→ ⟨σ ′
f ,h

′
f ⟩].

σ ′
f � σf , h

′
f � hf , therefore ϵ

′
f � ϵf

3.3 Type safety
Lemma (Subject reduction for expressions). If Θ ⊢ e : T and ⟨e, ·, ·⟩⇁ψ ⟨e ′, ·, ·⟩ then

Θ ⊢ e ′ : T

Proof. proof is by rule induction on the typing rules for expressions.

Lemma 2 (For individual processes the type system is sound.). For a single process, assuming
there are no deadlocks, if Θ ⊢ s : Θ, then either ⟨s,σ ,h, µ⟩ ⇁ ⟨skip,σ ,h, µ⟩ or ⟨s,σ ,h, µ⟩ ⇁
⟨s ′,σ ,h, µ⟩ and Θ ⊢ s ′ : Θ

Proof Sketch. We prove this property by induction on the typing rules. Since we assume there

are no deadlocks all processes would be eventually scheduled and the statement will be executed.

Most statements evaluate to skip in a single step and the proof is straightforward. We will present

several cases the proof of the remaining cases are similar.

Case: x = e If ⟨x = e,σ ,h, µ⟩ ⇁ ⟨x = e ′,σ ,h, µ⟩, we know from the subject reduction lemma for

expressions that Θ ⊢ e ′ : T . Therefore if Θ ⊢ s : Θ, then either Θ ⊢ x : T and Θ ⊢ e : T in which case

the property holds as Θ ⊢ e ′ : T or Θ ⊢ x : approx t and Θ ⊢ e : q t which again will be satisfied as

Θ ⊢ e ′ : q t .
Case: send(q, T , x) Consider send statements send(q, T , x), send statements are always enabled

and will evaluate to skip.

8

Case: x=receive(q, T) Receive statements will eventually get enabled as we assume there are no

deadlocks and evaluate to skip.
Case: x=e1 [r] e2 Probabilistic choice statements are always enabled as we assume there are no

deadlocks and evaluate to either x = e1 or x = e2. From the assumption we know that Θ ⊢

x = e1 [p] e2 : approx t based on type rule TR-Prob. Therefore, Θ ⊢ x : approx t and we can say

that Θ ⊢ x = e1 : approx t and Θ ⊢ x = e2 : approx t based on TR-Var2
The remaining cases are similar.

Theorem 2 (The type system is sound.). If ∅,∅, P {∗ ∅,∆, skip and Θ ⊢ P : Θ, then either
(·, ·, P)−→ψ (·, ·, skip)
or (·, ·, P)−→ψ (·, ·, P ′) and Θ ⊢ P ′

: Θ

Proof sketch. As the program P can be sequentialized there are no deadlocks. Therefore there

exist at least one individual process that can take a step. From lemma 2 we know that this step will

preserve the type of the statement and therefore the entire program will remain well typed.

9

APPENDIX C
4 REWRITE RULES
We define rewrite rules of the form, Γ,∆, P { Γ′,∆′, P ′

. The key rules are available in Figure 10.

In addition we define guarded expressions to support our rewriting steps. We redefine the interpre-

tation of contexts as follows for guarded expressions,

If Γ(α , β, t) = (b : n), JΓ(α , β , t)Kσ =

{
σ [n], if σ [b] , 0

∅, else

R-Send

∆ |= x = β β is a Pid
Γ[α , β , t] =m Γ′ = Γ[α , β, t 7→m + +y]

Γ,∆, [send(x, t, y)]α { Γ′,∆, skip

R-Receive

∆ |= x = β β is a Pid
Γ[β ,α , t] =m :: n Γ′ = Γ[β ,α , t 7→ n] ∆′ = ∆; y = m

Γ,∆, [y = receive(x, t)]α { Γ′,∆′, skip

R-CondSend

∆ |= x = β β is a Pid
Γ[α , β, t] =m Γ′ = Γ[α , β, t 7→m + +(b : y)]

Γ,∆, [cond-send(b, x, t, y)]α { Γ′,∆, skip

R-CondReceive

∆ |= x = β β is a Pid Γ[β ,α , t] = (b ′ :m) :: n
Γ′ = Γ[β,α , t 7→ n] ∆′ = ∆; b = b ′? 1 : 0; y = b ′?m : x

Γ,∆, [b,y = cond-receive(x, t)]α { Γ′,∆′, skip

R-Context

Γ,∆,A{ Γ′,∆′,A′

Γ,∆,A;B { Γ′,∆′,A’;B

Fig. 10. Rewrite Rules

5 REWRITE RULE SOUNDNESS
5.1 Definitions

Definition (Transitive closure of global semantics). →∗ is defined as the transitive closure
over global semantics rules.

Definition (Process-wise composition). A ⋉ B is the process-wise composition of A and B.
For each process α in B, A⋉ B sequences the statements belonging to α in A before those in B. This
definition is from [1].

Definition (Interpretation of stores). ϵ ∈ J∆Kϵ0 if and only if (ϵ0,∅,∆) →∗ (ϵ,∅, skip).
This definition is from [1].

Definition (Interpretation of contexts). µ ∈ JΓKϵ if and only if∀(α , β, t) ∈ dom(Γ).µ(α , β, t) =
JΓ(α , β , t)Kϵ . This definition is from [1].

Definition (Interpretation of stores and contexts). (ϵ, µ) ∈ J∆, ΓKϵ0 if and only if
• ϵ ∈ J∆Kϵ0

10

• µ ∈ JΓKϵ
• for all constraints {x ∈ X } in Γ,ϵ(x) ∈ ϵ(X)

• for all constraints {∅ ⊂ X ⊆ Y } in Γ,∅ ⊂ ϵ(X) ⊆ ϵ(Y)

This definition is from [1].

Definition (Preorder on stores and buffers).

ϵ ⪯ ϵ ′ ↔ dom(ϵ) ⊆ dom(ϵ ′) ∧ ∀x ∈ dom(ϵ).ϵ ′(x) = ϵ(x)

µ ⪯ µ ′ ↔ dom(µ) ⊆ dom(µ ′) ∧ ∀x ∈ dom(µ).∃m.µ ′(x) = µ(x) + +m
This definition is from [1].

Definition (Halted processes). α is a halted process, i.e. α ∈ hprocs(ϵ, µ, P) if any of the
following hold:

• α ’s remaining program is skip or an error.
• α ’s next statement is a receive or cond-receive, but there is no matching send or cond-send in the
rest of the program.

This definition is from [1].

Definition (Restriction of program stores and buffers). ϵ |X is the projection of ϵ to the set
of variables local to the processes in X . µ |X is the projection of µ to the subchannels whose destination
process is a process in X . This definition is from [1].

Definition (Preorder on halted environments).

(ϵ, µ, P) ⪯ (ϵ ′, µ ′, P ′) ↔ ϵ |H ⪯ ϵ ′ |H ∧ µ |H ⪯ µ ′ |H

Where H = hprocs(ϵ, µ, P). This definition is from [1].

Definition (Simulation on environments). (ϵ, µ, P) ⊑ (ϵ ′, µ ′, P ′) if and only if, for all (ϵ, µ, P) →∗

(ϵf , µf , Pf), there exists (ϵ ′f , µ
′
f , P

′
f), such that (ϵ

′, µ ′, P ′) →∗ (ϵ ′f , µ
′
f , P

′
f) and (ϵf , µf , Pf) ⪯ (ϵ ′f , µ

′
f , P

′
f).

This definition is from [1].

Definition (Simulation on rewrite rules). Γ,∆, P ⊑ Γ′,∆;∆′, P ′ if and only if, for all Px such
that P ⋉ Px is symmetrically nondeterministic,

∀(ϵ, µ) ∈ J∆, ΓK∅.∃(ϵ ′, µ ′) ∈ J∆;∆′, Γ′K∅.(ϵ, µ, P ⋉ Px) ⊑ (ϵ ′, µ ′, P ′ ⋉ Px)

This definition is from [1].

Definition (Left movers). s1 is a left mover in (ϵ, µ, P | |[s1; s]α) if and only if
• If s1 is enabled in (ϵ, µ, P | |[s1; s]α), and (ϵ, µ, P | |[s1; s]α) →∗ (ϵ ′, µ ′, P ′ | |[s1; s]α), then s1 is still
enabled in (ϵ ′, µ ′, P ′ | |[s1; s]α).

• If (ϵ, µ, P | |[s1; s]α)
β
−→ (ϵ0, µ0, P

′ | |[s1; s]α)
α
−→ (ϵ ′, µ ′, P ′ | |[s]α) then there exists ϵ1 and µ1 such

that (ϵ, µ, P | |[s1; s]α)
α
−→ (ϵ1, µ1, P | |[s]α)

β
−→ (ϵ ′, µ ′, P ′ | |[s]α). That is, s1 commutes to the left.

This definition is from [1].

5.2 Left Movers
Lemma. For all ϵ, µ, P ,α , s , cond-send(b, x, t,m) is a left mover in (ϵ, µ, P | |[cond-send(b, x, t,m); s]α).

Proof: The proof is by definition of left movers. cond-send is always enabled when it is the first

statement in a process. This satisfies the first condition in the definition of left movers.

11

Suppose (ϵ, µ, P | |[cond-send(b, x, t,m); s]α)
β
−→ (ϵ0, µ0, P0 | |[cond-send(b, x, t,m); s]α)

α
−→ (ϵ1, µ1, P0 | |[s]α)

and [s1]β is the first statement in β . Statement [s1]β is enabled at the start. Since cond-send can

only push to message queues where the source is α and does not affect any variables, [s1]β cannot

be disabled if cond-send is run first instead.

Let (ϵ, µ, P | |[cond-send(b, x, t,m); s]α)
α
−→ (ϵ2, µ2, P | |[s]α)

β
−→ (ϵ3, µ3, P0 | |[s]α). Now we need to

prove that ϵ1 = ϵ3 and µ1 = µ3.
Statement [s1]β can only access and modify variables that are not local to α . cond-send does not

modify any variables. [s1]β may push messages into message queues whose source is not α and

may pop messages from queues whose destination is not α . cond-send may only push messages to

queues whose source is α . In short, the actions performed by [s1]β and cond-send do not interfere

with each other. Therefore, the changes made by [s1]β to convert ϵ to ϵ0 and µ to µ0 are the same

changes as those made by [s1]β to convert ϵ2 to ϵ3 and µ2 to µ3. Also, the changes made by cond-send

to convert ϵ0 to ϵ1 and µ0 to µ1 are the same changes as those made by cond-send to convert ϵ to ϵ2
and µ to µ2. Therefore, ϵ1 = ϵ3 and µ1 = µ3.

Lemma. For all ϵ, µ, P ,α , s ,b,y = cond-receive(x, t) is a left mover in (ϵ, µ, P | |[b,y = cond-receive(x, t); s]α)
if the subchannel µ(ϵ(x),α , t) is not empty.

Proof: The proof is by definition of left movers. Only a statement in process α can pop from the

message queue µ(ϵ(x),α , t). Running statements from other processes does not affect the message

currently at the head of this queue. Therefore cond-receive is enabled even if P is run first. This

satisfies the first condition in the definition of left movers.

Suppose (ϵ, µ, P | |[b,y = cond-receive(x, t); s]α)
β
−→ (ϵ0, µ0, P0 | |[b,y = cond-receive(x, t); s]α)

α
−→

(ϵ1, µ1, P0 | |[s]α) and [s1]β is the first statement in β . Statement [s1]β is enabled at the start. Since

cond-receive can only affect variables local to α and can only pop from message queues where the

destination is α , [s1]β cannot be disabled if cond-receive is run first instead.

Let (ϵ, µ, P | |[b,y = cond-receive(x, t); s]α)
α
−→ (ϵ2, µ2, P | |[s]α)

β
−→ (ϵ3, µ3, P0 | |[s]α). Now we need

to prove that ϵ1 = ϵ3 and µ1 = µ3.
Statement [s1]β can only access and modify variables that are not local to α . cond-receive may

only modify variables local to α . [s1]β may push messages into message queues whose source

is not α and may pop messages from queues whose destination is not α . cond-receive may only

pop messages from queues whose destination is α . In short, the actions performed by [s1]β and

cond-receive do not interfere with each other. Therefore, the changes made by [s1]β to convert ϵ to
ϵ0 and µ to µ0 are the same changes as those made by [s1]β to convert ϵ2 to ϵ3 and µ2 to µ3. Also,
the changes made by cond-receive to convert ϵ0 to ϵ1 and µ0 to µ1 are the same changes as those

made by cond-receive to convert ϵ to ϵ2 and µ to µ2. Therefore, ϵ1 = ϵ3 and µ1 = µ3.

Lemma. If s1 is a left mover in (ϵ, µ, P | |[s1; s]α) then (ϵ, µ, P | |[s1; s]α) ⊑ (ϵ, µ, s1; P | |[s]α)

Proof: The proof analogous to the proof of the same in [1].

5.3 Rewrite Rule Soundness
Lemma 1. If Γ,∆, P { Γ′,∆;∆′, P ′ then Γ,∆, P ⊑ Γ′,∆;∆′, P ′

Proof: The proof is by induction on the derivation of Γ,∆, P { Γ′,∆;∆′, P ′
. Each rewrite rule

has a separate case. The proof for all rewrite rules except R-Cond-Send and R-Cond-Receive is

analogous to the proof of the same in [1]. The remaining proof is given here.

Case R-Cond-Send:
Let (ϵ, µ) ∈ J∆, ΓK∅ and assume

12

(ϵ, µ, [cond-send(b, x, t, n)]α ⋉ Px) →
∗ (ϵf , µf ,H)

since cond-send is a left mover,

(ϵ, µ, [cond-send(b, x, t, n)]α ; Px) →∗ (ϵf , µf ,H)

Suppose ϵ(x) = β . By the R-Cond-Send rewrite step, Γ′ = Γ[(α , β , t) 7→ Γ(α , β , t) + +(n : b)] and
∆′ = skip. Suppose (ϵ ′, µ ′) ∈ J∆′, Γ′Kϵ . Then ϵ ′ = ϵ and µ ′ = µ[(α , β, t) 7→ µ(α , β , t) + +m] where

m is ϵ(n) when ϵ(b) , 0 or ∅ when ϵ(b) = 0.

Suppose ϵ(b) , 0. Then by semantic rule E-Cond-Send-True,

(ϵ, µ[(α , β , t) 7→ µ(α , β , t) + +ϵ(n)], Px) →
∗ (ϵf , µf ,H)

Suppose ϵ(b) = 0. Then by semantic rule E-Cond-Send-False,

(ϵ, µ[(α , β , t) 7→ µ(α , β , t) + +∅], Px) →
∗ (ϵf , µf ,H)

that is,

(ϵ ′, µ ′, Px) →
∗ (ϵf , µf ,H)

Therefore, (ϵ, µ, [cond-send(b, x, t, n)]α ⋉ Px) ⊑ (ϵ ′, µ ′, Px).
Case R-Cond-Receive:
Let (ϵ, µ) ∈ J∆, ΓK∅ and assume

(ϵ, µ, [b,y = cond-receive(x, t)]β ⋉ Px) →
∗ (ϵf , µf ,H)

since cond-receive is a left mover,

(ϵ, µ, [b,y = cond-receive(x, t)]β ; Px) →∗ (ϵf , µf ,H)

Suppose ϵ(x) = α . By the R-Cond-Receive rewrite step, Γ′ = Γ[(α , β, t) 7→ pop(Γ(α , β , t))] and
∆′ = [β .b = α .b ′? 1 : 0; β .y = α .b ′? α .n : β .y]β when head(Γ(α , β, t)) = (n : b ′). Suppose (ϵ ′, µ ′) ∈
J∆′, Γ′Kϵ . Then µ ′ = µ[(α , β, t) 7→ pop(µ(α , β , t))]. Further, either ϵ ′ = ϵ[β .b 7→ 1][β .y 7→ α .n]
when head(µ(α , β , t)) = α .n or ϵ ′ = ϵ[β .b 7→ 0] when head(µ(α , β , t)) = ∅.

Suppose head(µ(α , β , t)) = α .n. Then by semantic rule E-Cond-Receive-True,

(ϵ[β .b 7→ 1][β .y 7→ α .n], µ[(α , β, t) 7→ pop(µ(α , β , t))], Px) →
∗ (ϵf , µf ,H)

Suppose head(µ(α , β , t)) = ∅. Then by semantic rule E-Cond-Receive-False,

(ϵ[β .b 7→ 0], µ[(α , β, t) 7→ pop(µ(α , β, t))], Px) →
∗ (ϵf , µf ,H)

that is,

(ϵ ′, µ ′, Px) →
∗ (ϵf , µf ,H)

Therefore, (ϵ, µ, [b,y = cond-receive(x, t)]α ⋉ Px) ⊑ (ϵ ′, µ ′, Px).

Lemma. If s1 is a left mover in (ϵ, µ, P | |[s1; s]α) then (ϵ, µ, P | |[s1; s]α) ⊒ (ϵ, µ, s1; P | |[s]α)

Proof: Suppose (ϵ, µ, s1; P | |[s]α) →∗ (ϵ ′, µ ′, P ′). We need to show that there exists (ϵ ′′, µ ′′, P ′′)

such that (ϵ, µ, P | |[s1; s]α) →
∗ (ϵ ′′, µ ′′, P ′′) and (ϵ ′, µ ′, P ′) ⪯ (ϵ ′′, µ ′′, P ′′). The first statement that

must be executed from (s1; P | |[s]α) is s1. Let (ϵ, µ, s1; P | |[s]α)
α
−→ (ϵs1 , µs1 , P | |[s]α). If s1 is also the

first statement executed from (P | |[s1; s]α), then we get (ϵ, µ, P | |[s1; s]α)
α
−→ (ϵs1 , µs1 , P | |[s]α). From

this point, both programs have the exact same behavior, hence the lemma is proved.

13

Lemma 3. If Γ,∆, P { Γ′,∆;∆′, P ′ then Γ,∆, P ⊒ Γ′,∆;∆′, P ′

Proof: Proof is split into multiple cases depending on the rewrite rule.

Case R-Send:
Let (ϵ ′, µ ′) ∈ J∆;∆′, Γ′K∅ and assume

(ϵ ′, µ ′, Px) →
∗ (ϵf , µf ,H)

By the R-Send rewrite step, Γ′ = Γ[(α , β , t) 7→ Γ(α , β, t) + +n] and ∆′ = skip. Suppose (ϵ, µ) ∈
J∆, ΓK∅. Then ϵ ′ = ϵ and µ ′ = µ[(α , β, t) 7→ µ(α , β , t) + +n]. Therefore,

(ϵ, µ[(α , β , t) 7→ µ(α , β , t) + +n], Px) →
∗ (ϵf , µf ,H)

by semantic rule E-Send,

(ϵ, µ, [send(β , t, n)]α ; Px)
α
−→ (ϵ, µ[(α , β, t) 7→ µ(α , β , t) + +n], Px)

therefore,

(ϵ, µ, [send(β, t, n)]α ; Px) →∗ (ϵf , µf ,H)

since send is a left mover,

(ϵ, µ, [send(β , t, n)]α ⋉ Px) →
∗ (ϵf , µf ,H)

Case R-Receive:
Let (ϵ ′, µ ′) ∈ J∆;∆′, Γ′K∅ and assume

(ϵ ′, µ ′, Px) →
∗ (ϵf , µf ,H)

By the R-Receive rewrite step, Γ′ = Γ[(α , β, t) 7→ pop(Γ(α , β, t))] and ∆′ = [β .y = α .n]β when

head(Γ(α , β , t)) = n. Suppose (ϵ, µ) ∈ J∆, ΓK∅. Then ϵ ′ = ϵ[β .y 7→ α .n] and µ ′ = µ[(α , β, t) 7→
pop(µ(α , β , t))]. Therefore,

(ϵ[β .y 7→ α .n], µ[(α , β, t) 7→ pop(µ(α , β, t))], Px) →
∗ (ϵf , µf ,H)

by semantic rule E-Receive,

(ϵ, µ, [receive(α , t)]β ; Px)
β
−→ (ϵ[β .y 7→ α .n], µ[(α , β, t) 7→ pop(µ(α , β, t))], Px)

therefore,

(ϵ, µ, [receive(α , t)]β ; Px) →∗ (ϵf , µf ,H)

since receive is a left mover,

(ϵ, µ, [receive(α , t)]β ⋉ Px) →
∗ (ϵf , µf ,H)

Case R-Cond-Send:
Let (ϵ ′, µ ′) ∈ J∆;∆′, Γ′K∅ and assume

(ϵ ′, µ ′, Px) →
∗ (ϵf , µf ,H)

By the R-Cond-Send rewrite step, Γ′ = Γ[(α , β , t) 7→ Γ(α , β , t)++(n : b)] and ∆′ = skip. Suppose
(ϵ, µ) ∈ J∆, ΓK∅. Then ϵ ′ = ϵ and µ ′ = µ[(α , β, t) 7→ µ(α , β , t)++m]wherem is ϵ(n)when ϵ ′(b) , 0

or ∅ when ϵ ′(b) = 0. Therefore,

14

(ϵ, µ[(α , β, t) 7→ µ(α , β, t) + +m], Px) →
∗ (ϵf , µf ,H)

by semantic rule E-Cond-Send-True or E-Cond-Send-False (depending onm),

(ϵ, µ, [cond-send(b, β , t, n)]α ; Px)
α
−→ (ϵ, µ[(α , β, t) 7→ µ(α , β , t) + +m], Px)

therefore,

(ϵ, µ, [cond-send(b, β, t, n)]α ; Px) →∗ (ϵf , µf ,H)

since cond-send is a left mover,

(ϵ, µ, [cond-send(b, β , t, n)]α ⋉ Px) →
∗ (ϵf , µf ,H)

Case R-Cond-Receive:
Let (ϵ ′, µ ′) ∈ J∆;∆′, Γ′K∅ and assume

(ϵ ′, µ ′, Px) →
∗ (ϵf , µf ,H)

By the R-Cond-Receive rewrite step, Γ′ = Γ[(α , β , t) 7→ pop(Γ(α , β, t))] and ∆′ = [β .b = α .b ′? 1 :
0; β .y = α .b ′? α .n : β .y]β when head(Γ(α , β , t)) = (n : b ′). Suppose (ϵ, µ) ∈ J∆, ΓK∅. Then µ ′ =
µ[(α , β , t) 7→ pop(µ(α , β , t))]. Further, either ϵ ′ = ϵ[β .b 7→ 1][β .y 7→ α .n] when head(µ(α , β , t)) =
α .n or ϵ ′ = ϵ[β .b 7→ 0] when head(µ(α , β , t)) = ∅.

Suppose head(µ(α , β , t)) = α .n. Then,

(ϵ[β .b 7→ 1][β .y 7→ α .n], µ[(α , β, t) 7→ pop(µ(α , β, t))], Px) →
∗ (ϵf , µf ,H)

Suppose head(µ(α , β, t)) = ∅. Then,

(ϵ[β .b 7→ 0], µ[(α , β , t) 7→ pop(µ(α , β , t))], Px) →
∗ (ϵf , µf ,H)

by semantic rule E-Cond-Receive-True or E-Cond-Receive-False,

(ϵ, µ, [b,y = cond-receive(α , t)]β ; Px)
β
−→ (ϵ[β .b 7→ 1][β .y 7→ α .n], µ[(α , β, t) 7→ pop(µ(α , β, t))], Px)

therefore,

(ϵ, µ, [b,y = cond-receive(α , t)]β ; Px) →∗ (ϵf , µf ,H)

since cond-receive is a left mover,

(ϵ, µ, [b,y = cond-receive(α , t)]β ⋉ Px) →
∗ (ϵf , µf ,H)

Case R-Context:
Proof is by application of the inductive hypothesis over rewrite rules.

Case R-Congruence:
By definition, A ≡ B if and only if the set of program traces in A is equivalent to the program

traces in B.
Case R-If-Then and R-If-Else
Since we do not allow communication inside conditionals, the rewritten program is congruent

to the original program.

15

5.4 Equivalence Lemma
Lemma 4. Suppose∅,∅, P { ∅,∆, skip. Then (∅,∅, P) →∗ (ϵ,∅, P0) if and only if (∅,∅,∆) →∗

(ϵ ′,∅, P ′
0
) such that ϵ |H = ϵ ′ |H where H = halted(ϵ,∅, P0).

Proof: By applying Lemma 1, we know that ∀(ϵ0, µ0) ∈ J∅,∅K∅,∃(ϵ1, µ1) ∈ J∆,∅K∅ such

that whenever (ϵ0, µ0, P) →
∗ (ϵ, µf , P0) then there exists (ϵ ′, µ ′f , P

′
0
) such that (ϵ1, µ1, skip) →

∗

(ϵ ′, µ ′f , P
′
0
) and ϵ |H = ϵ ′ |H where H = halted(ϵ, µf , P0). By unifying variables, we get that if

(∅,∅, P) →∗ (ϵ,∅, skip) then (∅,∅,∆) →∗ (ϵ,∅, skip).
Similarly, By applying Lemma 3, we know that the inverse holds true.

16

APPENDIX D

6 VERIFYING SAFETY AND ACCURACY OF TRANSFORMATIONS
6.1 Common Safety Properties
Transformed programs generated using the transformations in this section retain the following safety properties

of the original programs:

Sequentializability. If the original program can be sequentialized, then the transformed program can also

be sequentialized. As a result, if the original program is deadlock free, then the transformed program is also

deadlock free. This is because the transformations do not remove the sends and receives from the programs,

nor do they place the sends and receives inside a conditional statement. Further, when a send is converted to a

cond-send, the corresponding receive is always converted to a cond-receive.

Type Safety. If the original program is type safe, then the transformed program is also type safe. In particular,

if approximate variables do not affect the values of exact variables in the original program, then the same

applies for the transformed program. This is because we only apply these transformations, which introduce

approximation, when all the variables affected by the transformation are approximate.

6.2 Precision Reduction
This transformation reduces the precision of approximate data being transferred between processes in order to

reduce transmission time and energy usage. The type of the data must be changed in both the sending and

receiving processes to the same less precise type.

precise t1 n;

send(β, precise t1, n);

[]
α

∥ precise t1 x;

x = receive(α, precise t1);

[]
β

⇓

approx t1 n;

approx t2 n' = (approx t2) n;

send(β, approx t2, n');

[]
α

∥

approx t1 x;

approx t2 x';

x' = receive(α, approx t2);

x = (approx t1) x';


 β

precise t1 β.x, α.n;
β.x = α.n;

[]
seq

⇓

approx t1 β.x, α.n;
approx t2 β.x', α.n';
α.n' = (approx t2) α.n;
β.x' = α.n';
β.x = (approx t1) β.x';


seq

To use this transformation, it should be possible to convert the original data type t1 to a less precise data type
t2 and back, such as converting doubles to floats or 32 bit integers to 16 bit integers. Further, there must not be

already messages of type t2 being sent from p to q, else the converted code may affect the order of the messages.

17

6.3 Data Transfers over Noisy Channels
This transformation simulates the transfer of approximate data over an unreliable channel. The channel may

corrupt the data being sent over it with probability r and the receiver may receive a garbage value. We simulate

this by choosing to corrupt the data being sent at the sender with probability r . If corrupted, the value being
sent is replaced with a randomly chosen value.

precise t n;

send(β, precise t, n);

[]
α

∥ precise t x;

x = receive(α, precise t);

[]
β

⇓

approx t n;

n = n [r] randVal(approx t);

send(β, approx t, n);

[]
α

∥ approx t x;

x = receive(α, approx t);

[]
β

precise t β.x, α.n;
β.x = α.n;

[]
seq

⇓

approx t β.x, α.n;
α.n = α.n [r] randVal(approx t);

β.x = α.n;

[]
seq

Precise data must be sent over a perfectly reliable channel to avoid corruption.

6.4 Failing Tasks
This transformation simulates the execution of tasks that can fail with some probability r due to unreliable hard-
ware. We simulate this by converting the send of the approximate result to a cond-send and the corresponding

receive to a cond-receive. The condition of cond-send is 1 with probability 1 − r and 0 with probability r .

precise t n;

send(β, precise t, n);

[]
α

∥ precise t x;

x = receive(α, precise t);

[]
β

⇓

approx t n;

approx int b = 1 [r] 0;

cond-send(b, β, approx t, n);

[]
α

∥
approx t x;

approx int b;

b, x = cond-receive(α, approx t);

[]
β

precise t β.x, α.n;
β.x = α.n;

[]
seq

⇓

approx t β.x, α.n;
approx int α.b, β.b;
α.b = 1 [r] 0;

β.b = α.b ? 1 : 0;

β.x = α.b ? α.n : β.x;


seq

18

6.5 Approximate Map
This transformation uses approximate memoization [2] to reduce the number of tasks sent to worker threads.

This results in decreased communication and improves energy efficiency. If the master thread decides not to

send a task to a worker thread, then that worker thread will return an empty result. Upon receiving an empty

result, the master thread uses the most recently received result in its place.

precise t[] work[size(Q)];

precise t'[] results[size(Q)];

precise t' y;

precise int index = 0;

for(β:Q){
send(β, precise t, work[index]);

index = index + 1;

};

index = 0;

for(β:Q){
y = receive(β, precise t');

results[index] = y;

index = index + 1;

};



α

∥ Π.β : Q

precise t x;

precise t' y;

x = receive(α, precise t);

y = dowork(x);

send(α, approx t', y);


 β

⇓

approx t[] work[size(Q)];

approx t'[] results[size(Q)];

approx t' y;

approx int b, c;

precise int index = 0;

for(β:Q){
b = 1 [r] 0;

cond-send(b, β, approx t, work[index]);

index = index + 1;

};

index = 0;

for(β:Q){
c, y = cond-receive(β, approx t');

results[index] = y;

index = index + 1;

};



α

∥ Π.β : Q

approx t x;

approx t' y;

approx int b;

b, x = cond-receive(α, approx t);

y = b ? dowork(x) : 0;

cond-send(b, α, approx t', y);


 β

precise t[] α.work[size(Q)];
precise t'[] α.results[size(Q)];
precise t β.x;
precise t' α.y,β.y;
precise int α.index = 0;

for(β:Q){
β.x = work[α.index];
β.y = dowork(β.x);
α.index = α.index + 1;

};

α.index = 0;

for(β:Q){
α.y = β.y;
α.results[α.index] = α.y;
α.index = α.index + 1;

};



seq

⇒

approx t[] α.work[size(Q)];
approx t'[] α.results[size(Q)];
approx t β.x;
approx t' α.y,β.y;
approx int α.b,α.c,β.b;
precise int α.index = 0;

for(β:Q){
α.b = 1 [r] 0;

β.b = α.b ? 1 : 0;

β.x = α.b ? α.work[α.index] : β.x;
β.y = β.b ? dowork(β.x) : β.y;
α.index = α.index + 1;

};

α.index = 0;

for(β:Q){
α.c = β.b ? 1 : 0;

α.y = β.b ? β.y : α.y;
α.results[α.index] = α.y;
α.index = α.index + 1;

};



seq
This transformation requires the program to match a pattern where a single thread (the master) sends

messages to multiple symmetric threads (the workers) and then gathers results from all the workers.

6.6 Approximate Reduce
This transformation approximates an aggregation operation such as finding the minimum, maximum, or sum

of multiple elements. The master thread does not send all the work items to the worker threads. The worker

19

threads that do not receive work reply with an empty result. This empty result is not aggregated. At the end,

the master threads adjusts the aggregate based on the number of workers that responded with a result.

precise int s = 0, y;

for (β:Q){
y = receive(β, precise int);

s = s + y;

};

s = s / size(Q)


α

∥ Π.β : Q precise int y = dowork();

send(α, precise int, y)

[]
β

⇓

approx int s = 0, y, c, ctr = 0, skip;

for (β:Q){
c, y = cond-receive(β, approx int);

s = s + (c ? y : 0);

ctr = ctr + (c ? 1 : 0);

};

skip = ctr > 0;

s = skip ? (s / ctr) : 0



α
∥ Π.β : Q

approx int y,b

b = 1 [r] 0;

y = b ? dowork() : 0;

cond-send(b, α, approx int, y)


 β

precise int α.y, β.y, α.s=0;
for(β:Q){
β.y = dowork();

};

for(β:Q){
α.y = β.y;
α.s = α.s + α.y;

};

α.s = α.s / size(Q);



seq
⇓

approx int α.y, α.c, β.y, β.b,
α.ctr=0, α.s=0, α.skip;

for(β:Q){
β.b = 1 [r] 0;

β.y = β.b ? dowork() : 0;

};

for(q:Q){

α.c = β.b ? 1 : 0;

α.y = β.b ? β.y : α.y;
α.s = α.s + (α.c ? α.y : 0);

α.ctr = α.ctr + (α.c ? 1 : 0);

};

α.skip = α.ctr > 0;

α.s = α.skip ? (α.s / ctr) : 0;



seq
This transformation requires the program to match a pattern where a single thread (the master) sends

messages to multiple symmetric threads (the workers) and then gathers results from all the workers. The result

from the workers must be aggregated via an operation such as sum, min, or max. Care must be taken when

performing the aggregate adjustment, as the number of workers that respond with a usable result may be zero.

In the example, it is necessary to add a check to ensure that the ctr variable is nonzero when adjusting the

aggregate, otherwise a divide by zero error can occur. By performing this check, this transformation does not

introduce the possibility of a new divide by zero error.

6.7 Skipping Negligible Updates
This transformation drops packets if the value being sent is a scalar below a certain threshold. The receiver

must be adding the received value to a sum variable. This transformation saves energy by not sending small

updates to the receiver, which will cause an insignificant change in the sum.

20

precise int y,s=0;

for(β:Q){
y = receive(β, precise int);

s = s + y;

};


α

∥ Π.β : Q
precise int y;

y = dowork();

send(α, precise int, y);

[]
β

⇓

approx int y,s=0,b;

for(β:Q){
b, y = cond-receive(β, approx int);

s = s + (b ? y : 0);

};


α

∥ Π.β : Q
approx int y,b;

y = dowork();

b = (y >= threshold);
cond-send(b, α, precise int, y);


 β

precise int α.y,β.y,α.s=0;
for(β:Q){
β.y = dowork();

};

for(β:Q){
α.y = β.y;
α.s = α.s + α.y;

};



seq
⇓

approx int α.y,β.y,α.s=0,α.b,β.b;
for(β:Q){
β.y = dowork();

};

for(β:Q){
β.b = (β.y >= threshold);
α.b = β.b ? 1 : 0;

α.y = β.b ? β.y : α.y;
α.s = α.s + (α.b ? α.y : 0);

};



seq
This transformation requires that the received value is used to update some other variable via addition. The

result message type must be scalar to allow thresholding.

6.8 Scatter-Gather
The scatter-gather pattern is similar to the map pattern. However, instead of sending a worker one work item

and receiving one result, the worker is sent an entire array. The worker may randomly access parts of the array

and returns multiple results. In the code below, for compactness, we also use the task id β as an index variable.

precise t[] data[N];

precise t'[] results[size(Q)*2];

for(β:Q){
send(β, precise t[], data);

send(β, precise int, slice(β, N));

send(β, precise int, slice(β+1, N));

};

for(β:Q){
results[β*2] = receive(β, precise t');

results[β*2+1] = receive(β, precise t');

};



α
∥ Π.β : Q

precise t[] data[N];

precise int start,end;

precise t' result;

data = receive(α, precise t[]);

start = receive(α, precise int);

end = receive(α, precise int);

result = job1(data, start, end);

send(α, precise t', result);

result = job2(data, start, end);

send(α, precise t', result);



 β
⇓

approx t[] data[N];

approx t'[] results[size(Q)*2];

approx int fail;

for(β:Q){
send(β, approx t[], data);

send(β, approx int, slice(β, N));

send(β, approx int, slice(β+1, N));

};

for(β:Q){
fail, results[β*2] = cond-receive(β, approx t');

fail, results[β*2+1] = cond-receive(β, approx t');

};



α

∥ Π.β : Q

approx t[] data[N];

approx int start,end;

approx t' result;

approx int fail;

data = receive(α, approx t[]);

start = receive(α, approx int);

end = receive(α, approx int);

fail = 1 [r] 0;

result = fail ? job1(data, start, end) : result;

cond-send(fail, α, approx t', result);

result = fail ? job2(data, start, end) : result;

cond-send(fail, α, approx t', result);



 β
21

precise t[] α.data[N],β.data[N];
precise t'[] α.results[size(β)*2];
precise int β.start,β.end;
precise t' β.result;
for(β:Q){
β.data = α.data;
β.start = slice(β,N);
β.end = slice(β+1,N);

};

for(β:Q){
β.result = job1(β.data,β.start,β.end);
α.results[β*2] = β.result;
β.result = job2(β.data,β.start,β.end);
α.results[β*2+1] = β.result;

};



seq
⇓

approx t[] α.data[N],β.data[N];
approx t'[] α.results[size(β)*2];
approx int β.start,β.end;
approx t' β.result;
approx int α.fail,β.fail;
for(β:Q){
β.data = α.data;
β.start = slice(β,N);
β.end = slice(β+1,N);

};

for(β:Q){
β.fail = 1 [r] 0;

β.result = β.fail ? job1(β.data,β.start,β.end) : β.result;
α.fail = β.fail ? 1 : 0;

α.results[β*2] = β.fail ? β.result : α.results[β*2];
β.result = β.fail ? job2(β.data,β.start,β.end) : β.result;
α.fail = β.fail ? 1 : 0;

α.results[β*2+1] = β.fail ? β.result : α.results[β*2+1];
};



seq

Several previous transformations, such as precision reduction, approximate map, failing tasks, etc. can also

be applied to this pattern.

6.9 Scan
The scan pattern takes an input array and generates an output array. The nth element of the output depends on

the first n elements of the input and is calculated by an associative function (such as summation, average, etc.)

In the code below, for compactness, we also use the task id β as an index variable.

22

precise int[] input[N];

precise int[] output[N];

precise int index;

index = 0;

for(β:Q){
send(β, precise int, index);

send(β, precise int[], input);

index = index+1;

};

for(β:Q){
output[β] = receive(β, precise int);

};



α

∥ Π.β : Q

precise int[] input[N];

precise int output;

precise int index, i;

index = receive(α, precise int);

input = receive(α, precise int[]);

output = 0;

i = 0;

repeat N{

if(index <= i){

output = output + input[i];

};

i = i + 1;

};

send(α, precise int, output);



 β
⇓

approx int[] input[N];

approx int[] output[N];

precise int index;

index = 0;

for(β:Q){
send(β, precise int, index);

send(β, approx int[], input);

index = index+1;

};

for(β:Q){
output[β] = receive(β, approx int);

};



α

∥ Π.β : Q

approx int[] input[N];

approx int output;

precise int index, i;

index = receive(α, precise int);

input = receive(α, approx int[]);

output = 0;

i = 0;

repeat N{

if(index <= i){

output = output + input[i];

};

i = i + 1;

};

//simulate noisy channel

output = output [r] randInt();

send(α, approx int, output);



 β

precise int[] α.input[N];
precise int[] α.output[N];
precise int[] β.input[N];
precise int α.index,β.output,β.index,β.i;
α.index = 0;

for(β:Q){
β.index = α.index;
β.input = α.input;
α.index = α.index+1;
β.output = 0;

β.i = 0;

repeat N{

if(β.index <= β.i){
β.output = β.output + β.input[β.i];

};

β.i = β.i + 1;

};

};

for(β:Q){
α.output[β] = β.output;

};



seq

⇒

approx int[] α.input[N];
approx int[] α.output[N];
approx int[] β.input[N];
precise int α.index,β.index,β.i;
approx int β.output;
α.index = 0;

for(β:Q){
β.index = α.index;
β.input = α.input;
α.index = α.index+1;
β.output = 0;

β.i = 0;

repeat N{

if(β.index <= β.i){
β.output = β.output + β.input[β.i];

};

β.i = β.i + 1;

};

};

for(β:Q){
//simulate noisy channel

β.output = β.output [r] randInt();

α.output[β] = β.output;
};



seq
For this pattern we simulate a noisy channel. Other approximations can also be applied.

6.10 Stencil
The stencil pattern calculates each element of the output array by applying some function to the correspond-

ing element in the input array along with its neighbors. It is used in many image-processing and scientific

applications. In the code below, for compactness, we also use the task id β as an index variable.

23

precise float64[] input[N];

precise float64[] output[N];

precise int index;

index = 0;

for(β:Q){
send(β, precise int, index);

send(β, precise float64[], input);

index = index+1;

};

for(β:Q){
output[β] = receive(β, precise float64);

};



α

∥ Π.β : Q

precise float64[] input[N];

precise float64 output;

precise int index;

index = receive(α, precise int);

input = receive(α, precise float64[]);

output = (input[index-1]+input[index]+input[index+1])/3;

send(α, precise float64, output);


 β

⇓

approx float64[] input[N];

approx float32[] input32[N];

approx float64[] output[N];

approx float32 output32;

precise int index;

index = 0;

input32 = (approx float32[])input;

for(β:Q){
send(β, precise int, index);

send(β, approx float32[], input32);

index = index+1;

};

for(β:Q){
output32 = receive(β, approx float32);

output[β] = (approx float64)output32;

};



α

∥ Π.β : Q

approx float32[] input[N];

approx float32 output;

precise int index;

index = receive(α, precise int);

input = receive(α, approx float32[]);

output = (input[index-1]+input[index]+input[index+1])/3;

send(α, approx float32, output);


 β

precise float64[] α.input[N];
precise float64[] α.output[N];
precise float64[] β.input[N];
precise float64 β.output;
precise int α.index,β.index;
α.index = 0;

for(β:Q){
β.index = α.index;
β.input = α.input;
α.index = α.index+1;
β.output = (β.input[β.index-1]+β.input[β.index]+β.input[β.index+1])/3;

};

for(β:Q){
α.output[β] = β.output;

};



seq
⇓

approx float64[] α.input[N];
approx float32[] α.input32[N];
approx float64[] α.output[N];
approx float32[] β.input[N];
approx float32 α.output32,β.output;
precise int α.index,β.index;
α.input32 = (approx float32[])α.input;
α.index = 0;

for(β:Q){
β.index = α.index;
β.input = α.input32;
α.index = α.index+1;
β.output = (β.input[β.index-1]+β.input[β.index]+β.input[β.index+1])/3;

};

for(β:Q){
α.output32 = β.output;
α.output[β] = (approx float64)α.output32;

};



seq
This code simulates precision reduction.

24

6.11 Partition
This pattern is similar to the stencil pattern, but the calculations are performed on disjoint partitions of the

input array to obtain the output array. In the code below, for compactness, we also use the task id β as an index

variable.

precise float64[] input[N];

precise float64[] output[N];

precise int index;

index = 0;

for(β:Q){
send(β, precise int, index);

send(β, precise float64[], input);

index = index+2;

};

for(β:Q){
output[β] = receive(β, precise float64);

};



α

∥ Π.β : Q

precise float64[] input[N];

precise float64 output;

precise int index;

index = receive(α, precise int);

input = receive(α, precise float64[]);

output = (input[index]+input[index+1])/2;

send(α, precise float64, output);


 β

⇓

approx float64[] input[N];

approx float64[] output[N];

precise int index;

approx int fail;

index = 0;

for(β:Q){
send(β, precise int, index);

send(β, approx float64[], input);

index = index+2;

};

for(β:Q){
fail, output[β] = cond-receive(β, approx float64);

};



α

∥ Π.β : Q

approx float64[] input[N];

approx float64 output;

precise int index;

approx int fail;

index = receive(α, precise int);

input = receive(α, approx float64[]);

output = (input[index]+input[index+1])/2;

//simulate failing tasks

fail = 1 [0.99] 0;

cond-send(fail, α, approx float64, output);



 β
precise float64[] α.input[N];
precise float64[] α.output[N];
precise float64[] β.input[N];
precise int α.index,β.index;
precise float64 β.output;
α.index = 0;

for(β:Q){
β.index = α.index;
β.input = α.input;
α.index = α.index+2;
β.output = (β.input[β.index]+β.input[β.index+1])/2;

};

for(β:Q){
α.output[β] = β.output;

};



seq

⇒

approx float64[] α.input[N];
approx float64[] α.output[N];
approx float64[] β.input[N];
precise int α.index,β.index;
approx float64 β.output;
approx int α.fail,β.fail;
α.index = 0;

for(β:Q){
β.index = α.index;
β.input = α.input;
α.index = α.index+2;
β.output = (β.input[β.index]+β.input[β.index+1])/2;

};

for(β:Q){
//simulate failing tasks

β.fail = 1 [0.99] 0;

α.fail = β.fail ? 1 ; 0;

α.output[β] = β.fail ? β.output : α.output[β];
};



seq
This code simulates task failing

25

APPENDIX E
7 EVALUATION
We evaluated the benefits of some approximations by cross-compiling our programs from Parallely to

Go language. How each approximation was simulated is described in the paper. Table 1 shows the

parameters used in each of the benchmark’s approximation (Column 2), number of processes we used

(Column 3), and the size of the inputs (Column 4).

Table 1. Experimental Setup for Evaluation

Benchmark Approximation # Input

procs

PageRank Failing Tasks with 1 × 10
−6

probability 16 10 Iterations, randomly generated graph with 1000 nodes

Scale Failing Tasks with 0.0001 probability 16 512 × 512 pixel image (baboon.ppm)

SOR Precision Reduction (Float64 to Float32) 10 10 iteration on a 1000 × 1000 array

Sobel Precision Reduction (Float64 to Float32) 10 1000 × 1000 array in the range [0,1]

Motion Approximate Reduce (Skipping 90% of tasks) 10 10 blocks with 1600 pixels each

For each benchmark we collected the results over 100 runs and present the averaged performance

and accuracy numbers. For each benchmark, we verified the accuracy or reliability property specified

in Table 1 of the paper.

Table 2. Generated Constraints from reliability/accuracy analysis

Benchmark Analysis Calculated bound

PageRank Reliability 0.99 ≥ ℛ(pagerank)

Scale Reliability 0.99 ≥ ℛ(output)

SOR Accuracy 2
−18 ≥ 𝒟(result)

Sobel Accuracy 2
−15 ≥ 𝒟(result)

Table 2 presents the final outcome of the reliability/accuracy analysis for the benchmarks we

evaluated for performance. Column 3 shows the final constraint we calculated for each benchmark.

These bounds are more tighter than the required bounds from the specification.

We omitted the accuracy analysis forMotion since it returns an index and the accuracy requirements

cannot be specified using our specification language. Therefore, we only verified type safety and

deadlock-freeness.

REFERENCES
[1] Alexander Goldberg Bakst. Sequentialization and Synchronization for Distributed Programs. PhD thesis, UC San Diego, 2017.

[2] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. Paraprox: Pattern-based approximation for

data parallel applications. In ASPLOS, 2014.
[3] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. Enerj: Approxi-

mate data types for safe and general low-power computation. In PLDI, 2011.

26

	Abstract
	1 Definitions
	2 Language Semantics
	3 Non-Interference
	3.1 Sequential Non-Interference
	3.2 Distributed Noninterference
	3.3 Type safety

	4 Rewrite rules
	5 Rewrite Rule Soundness
	5.1 Definitions
	5.2 Left Movers
	5.3 Rewrite Rule Soundness
	5.4 Equivalence Lemma

	6 Verifying Safety and Accuracy of Transformations
	6.1 Common Safety Properties
	6.2 Precision Reduction
	6.3 Data Transfers over Noisy Channels
	6.4 Failing Tasks
	6.5 Approximate Map
	6.6 Approximate Reduce
	6.7 Skipping Negligible Updates
	6.8 Scatter-Gather
	6.9 Scan
	6.10 Stencil
	6.11 Partition

	7 Evaluation
	References

