Accuracy-Aware Program Transformations

Sasa Misailovic

MIT

misailo@csail.mit.edu

1.

Program approximation has been accepted as a necessary and use-
ful technique for solving time-consuming computational problems
since the inception of computer science. However, for a long time
it has been treated exclusively as an algorithmic problem — a do-
main expert, computer scientist, or a developer has been respon-
sible for proposing, implementing, and evaluating approximate al-
gorithms. Up to recently, most programming languages did not ex-
pose special abstractions to support approximate program devel-
opment. Moreover, automated program optimizations have been
exclusively semantics-preserving transformations — the compiler
guarantees that the optimized and original programs always pro-
duce identical results.

Many emerging applications operate on noisy inputs or solve
problems for which multiple solutions are possible (while some
may be more accurate than the others). In addition, recent hard-
ware design proposals provide components that can save energy
in return for occasionally producing incorrect results. Traditional,
semantics-preserving program optimizations are too rigid to exploit
the full optimization potential of these applications. Instead, we
need a novel program optimization approach that relaxes the no-
tion of binary correctness of program transformations.

We propose accuracy-aware program transformations that
change semantics of a program to trade accuracy for performance
by exploiting the properties of program’s inputs, structure, and
execution environment. Automatically applying accuracy-aware
transformations provides an additional opportunity to reduce de-
velopers’ engineering effort, reduce resource consumption, and
increase program’s functionality.

However, these opportunities come at a price — the transforma-
tions introduce uncertainty into the computation and can generate
many alternative programs with different tradeoffs. A key prereq-
uisite to utilizing this potential is responding to the two challenges:
1) to characterize the effects that a transformation has on a pro-
gram and 2) to automatically discover transformations that provide
maximum performance gains for an acceptable accuracy loss.

The goal of our research is to provide developers and users with
optimization techniques to automatically generate approximate
programs that deliver profitable, safe, and predictable tradeoffs
between accuracy and performance. This paper presents several
transformation and reasoning techniques that are starting points
toward that goal.

Introduction

2. Accuracy-aware Program Transformations

Accuracy-aware program transformations intentionally change the
semantics of programs to trade accuracy for performance. Each
of these transformations targets a specific language construct or a
computational pattern that can be found in many programs. Many
accuracy-aware transformations are configurable — their parameters
can control how aggressive the approximation should be.

Discarding Inputs and Computation. These transformations
cause the programs to do less work by skipping some of its in-
puts or interrupting the computation. Sampling selects only a sub-

set of inputs from typical reduction operator like summation or
maximization [6, 13]. Loop perforation [9, 12] skips iterations of
a for-style loop. This transformation sometimes corresponds to
sampling, but in general case it generates a new implementation of
the target function with variable accuracy. Task skipping [10, 11]
relaxes the requirement to wait for all threads at synchronization
barriers. Once the majority of threads finish their computation, the
transformed program interrupts the remaining threads.
Variable-Accuracy Computation. Randomized function substi-
tution replaces a call to a fully accurate function to a random choice
between the calls to one of the less accurate function implementa-
tions [6, 13]. A deterministic version of function substitution and
precision scaling have also been explored by other researchers.
Exploiting Execution Environment. Some transformations ex-
ploit the inherent randomness or unreliability of the program’s
execution environment. Placement of unreliable arithmetic oper-
ations [4] in programs written in Rely [2] depends on the proba-
bility that the underlying hardware produces a correct result for an
operation such as addition or multiplication. Lock elision (which
removes lock synchronization) trades the accuracy of shared vari-
ables for time saved by avoiding synchronization [10]. The effect
of this transformation depends both on the load of the system and
the operating system scheduler.

3. Reasoning About Transformed Programs

In general, program optimization with accuracy-aware transforma-
tions becomes a decision problem under uncertainty. A key prereq-
uisite to successfully applying the accuracy-aware transformations
is understanding the effect that a transformation has on the pro-
gram’s result. Program analyses for these transformations should
provide a developer with arguments to answer the question:

“Will the benefits of improving the program’s performance
and energy consumption outweigh the cost of decreasing
the accuracy of its results?”

One way to answer this question is to design 1) accuracy analy-
ses that express accuracy cost and 2) search algorithms that explore
the tradeoff space for programs that yield maximum performance
or energy benefits for acceptable accuracy costs.

3.1 Accuracy Analysis

Accuracy analyses quantify the deviation of the result of the trans-
formed computation from the result of the original computation.
Accuracy analyses may have different precision and generality,
which are often related to the kinds of computations they analyze.
Empirical Reasoning. Empirical testing executes an approxi-
mate program on a set of representative inputs. While it gives the
most precise result (the exact accuracy loss) and works for large
programs, it does not generalize to any input beyond the tested in-
puts. In our previous work, empirical evaluation of accuracy-aware
transformations provided us with an initial understanding of the
phenomena and helped us assess the usefulness of the transforma-
tions (3,9, 12].

Worst-Case Reasoning. Calculating worst-case error bound is
on the opposite side of the analysis expressiveness spectrum. The
result of this analysis generalizes for all inputs, but for many inputs
its prediction is overly pessimistic. Yet, the worst case error gives
us one useful way of understanding the uncertainty of the computa-
tion: the error can (and sometimes will) be quite large; a developer
should be comfortable with program infrequently producing large,
even the worst case errors.

Probabilistic Reasoning. Probabilistic bounds complement the
worst case bounds by providing limits on both the frequency and
magnitude of errors. In our previous work, we have studied error
bounds of the form Pr[|D| < B] > 1 — §, where B is the
acceptable bound on the error magnitude D, and § is the frequency
of unacceptable errors. B and J are provided by the user. We
studied the cases when the randomness may come from inputs [8]
or be inherently present in the computation [6, 13]. Presently, these
analyses require a specific form of an approximate computation.

Statistical Reasoning. In some situations, it may be necessary
to execute programs on real inputs, but still produce confidence
bounds on the result of the analysis (e.g., to quantify randomness
from the computation or environment). For instance, we have used
statistical hypothesis testing to characterize the frequency of large
errors [10]. We have also used distribution fitting to estimate the
magnitude of error of perforated computations [7].

3.2 Search for Approximate Programs

The optimization algorithm searches for the transformed approxi-
mate programs that can be executed in a minimum amount of time
or consume minimal energy. It starts from a fully accurate program.
To automatically discover approximate programs, we define a three
stage find-analyze-navigate optimization approach:

¢ Find. In this stage, the optimization algorithm identifies sub-
computations that may be good approximation candidates
through profiling.

Analyze. In this stage, the optimization algorithm analyzes
performance, accuracy loss, and safety of a transformed pro-
gram location. To test accuracy, a developer specifies an accu-
racy loss metric, which is a relational accuracy predicate (the
expected value of an error metric or probability of large er-
rors) and acceptable error bound. To test safety of the trans-
formed program, the algorithm uses either dynamic criticality
testing [3, 9, 11, 12], which checks whether the computation
had unwanted behavior on test inputs, or static verification of
computation’s integrity properties [1].

Navigate. In this stage, the optimization algorithm navigates
the accuracy/performance tradeoff space to 1) find combina-
tions of transformations that yield maximum performance sav-
ings and 2) construct a tradeoff curve containing the programs
that deliver most profitable tradeoffs for different error bounds.

The optimization produces a set of transformed programs to-
gether with their accuracy and performance characteristics. These
transformed programs allow a developer or a user to tune the appli-
cation’s accuracy to different levels.

We have proposed two instances of the find-analyze-navigate
approach for exploring the tradeoff space:

Explicit Search. Explicit search finds acceptable transformations
by executing the transformed program on a set of user-provided
representative inputs [3, 5, 9, 10, 12]. It uses a user defined error
metric and empirical or statistical analysis to characterize the out-
put’s accuracy losses. While the result of the analysis is valid only
for those inputs and outputs, in practice, the results of these analy-
ses and search typically carry over to similar inputs.

Mathematical Optimization. This approach statically analyzes
the program and constructs error and performance expressions pa-
rameterized by variables that denote whether the program transfor-
mation should be applied. The examples of mathematical optimiza-
tion approaches are [6, 13] and [4].

These techniques use probabilistic error analyses to construct
the error expressions. Therefore, unlike the explicit search, the re-
sults of this search are valid for a whole class of inputs — typically
all possible inputs or inputs that fall within a certain range. How-
ever, this more powerful accuracy property comes at a price that
a computation must have a special structure [6, 13] or check for a
weaker probabilistic property, e.g. error frequency [4].

4. Conclusion

Automated accuracy-aware optimizations are going to change
many phases of software development process, including software
specification, profiling, testing, and evolution. To make any of these
approaches succeed, we need to empower a developer — through
education, more powerful reasoning techniques, and tools — with
understanding or good intuition of the ways in which input, com-
putation, and environment randomness can affect their programs.

Accuracy-aware optimizations also have the potential to change
the software reuse practices. A standard development goal for many
libraries (and other reusable components) is to prepare the libraries
to operate under most adverse conditions, which may be overly
conservative. A developer of a client application, who may not have
an expertise or interest to manually modify library code, may use
the automated optimization with accuracy-aware transformations
to generate less accurate library code implementations and thus
specialize the library code for their purposes.

Acknowledgements. The parts of the work presented in this pa-
per are done in collaboration with Martin Rinard and Michael
Carbin, Henry Hoffmann, Jonathan Kelner, Deokhwan Kim, Daniel
Roy, Stelios Sidiroglou, and Zeyuan Allan Zhu.

References

[1] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving accept-
ability properties of relaxed nondeterministic approximate programs.
PLDI, 2012.

[2] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative relia-
bility for programs that execute on unreliable hardware. OOPSLA’13.

[3] H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard. Dynamic knobs for responsive power-aware computing.
ASPLOS, 2011.

[4] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. Rinard. Reliability-
aware optimization of approximate computational kernels with rely.
Technical Report MIT-CSAIL-TR-2014-001, MIT, 2014.

[5] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential pro-
grams with statistical accuracy tests. ACM TECS PEC, 2013.

[6] S. Misailovic and M. Rinard. Synthesis of randomized accuracy-
aware map-fold programs. Technical Report MIT-CSAIL-TR-2013-
031, MIT, 2013.

[7] S. Misailovic, D. Roy, and M. Rinard. Probabilistic and Statistical
Analysis of Perforated Patterns. Technical Report MIT-CSAIL-TR-
2011-003, MIT, 2011.

[8] S. Misailovic, D. Roy, and M. Rinard. Probabilistically Accurate
Program Transformations. SAS, 2011.

[9] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. ICSE, 2010.

[10] S. Misailovic, S. Sidiroglou, and M. Rinard. Dancing with uncertainty.
In RACES, 2012.

[11] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks. ICS, 2006.

[12] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. FSE 2011.

[13] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized
accuracy-aware program transformations for efficient approximate
computations. POPL, 2012.

