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Abstract. We propose a novel tool, AquaSense, to automatically reason
about the sensitivity analysis of probabilistic programs. In the context
of probabilistic programs, sensitivity analysis investigates how the per-
turbation in the parameters of prior distributions affects the program’s
result, i.e., the program’s posterior distribution. AquaSense leverages
quantized inference, an efficient and accurate approximate inference al-
gorithm that represents distributions of random variables with quantized
intervals. AquaSense is the first tool to support sensitivity analysis of
probabilistic programs that is at the same time symbolic, differentiable,
and practical.
Our evaluation compares AquaSense with an existing system PSense (a
system that relies on fully symbolic inference). AquaSense can compute
the sensitivity of all 45 parameters from 12 programs, compared to 11/45
that PSense computes. AquaSense is particularly effective on programs
with continuous distributions: it achieves an average speedup of 18.10×
over PSense (which, in contrast, can solve only a handful of problems).
Our evaluation shows that AquaSense computes exact results on discrete
programs. On 91% of evaluated continuous parameters, AquaSense com-
puted the sensitivity results within 40 seconds with high accuracy (below
5% error). The paper also discusses AquaSense’s performance-accuracy
trade-offs, which can enable different operational points for programs
with different input data sizes.

Keywords: Probabilistic Programming · Sensitivity Analysis · Quan-
tized Inference.

1 Introduction

Probabilistic programming (PP) provides an intuitive way to encode statistical
models in the form of programs. It is a quickly rising discipline that has seen ap-
plications in areas like computer vision [22], robotics [25], scientific simulation [4],
and data science [28]. Probabilistic programming allows a developer to encode
uncertainty in the program as random variables. When declaring random vari-
ables, the developer specifies the prior beliefs of the random variables using prob-
ability distributions and encodes the model in the program by relating the ran-
dom variables to data observations. The developer then makes queries about the
posterior distribution of these random variables after execution of the program.
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When developing a probabilistic program, developers need to make assump-
tions regarding the model and the data on which the inference is performed
(e.g., a common assumption is Gaussian distributions with a fixed variance).
However, it is unknown how reliable these assumptions are. Many studies have
reported that a wrong prior could lead to incorrect results [5,27,21]. Testing
the sensitivity of the parameters of prior distributions is a way to identify such
incorrectly-chosen priors and improve the underlying statistical model.

In this work, we focus on the sensitivity analysis of probabilistic programs,
which addresses the question: if we change the prior distribution, how will the
posterior distribution of random variables change?
AquaSense. We present AquaSense, an automated tool for efficient and accu-
rate sensitivity analysis of probabilistic programs. AquaSense takes a probabilis-
tic program as input, injects a symbolic perturbation ϵ for each prior parameter
in the program, then simulates the change in the posterior distribution due to
the ϵ values.

At its core, AquaSense leverages quantized inference of probabilistic pro-
grams. Quantized inference splits the values of continuous random variables into
finite intervals and thus works around intractable integrals [17]. Our quantization-
based sensitivity analysis can solve a significantly broader range of probabilistic
programs than existing tools, while guaranteeing the point-wise convergence of
the result sensitivity for continuous programs and small error in practice.
Results. We compare our approach to PSense [19], a system for exact sensitivity
analysis, which uses PSI [14], an exact symbolic inference engine, together with a
computer algebra system to computes a symbolic and exact sensitivity function.

We evaluated AquaSense on 12 probabilistic programs and analyzed the sen-
sitivity of 45 prior parameters. Results show that AquaSense computes the sen-
sitivity of all 45 parameters, compared to 11 by the baseline PSense. On all
11 discrete parameters, AquaSense produces exact results with comparable per-
formance with PSense. On 34 continuous parameters, AquaSense achieves an
average speedup of 18.10× over PSense. On 31 (91%) continuous parameters,
AquaSense produces results within 5% of relative error in 40s, averaging 5.89s.
We also show that the time-accuracy trade-off of AquaSense is reasonable.
Contributions. We summarize our contributions as follows:

1. We design and build a quantization-based sensitivity analyzer AquaSense
for real-world probabilistic programs. AquaSense supports multiple front-
end languages and leverages quantized inference to analyze models that are
out of reach of existing tools.

2. We formally prove the point-wise convergence of AquaSense analysis to the
exact analysis results on continuous programs with bounded support. We
present empirical evidence that AquaSense is exact on discrete programs.

3. We experimentally show AquaSense supports a broader set of continuous
programs and achieves orders-of-magnitude speedup than the existing tool
PSense, while having comparable capability and speed on discrete programs.

Availability. Latest source code and artifact is available at https://github.
com/uiuc-arc/aquasense.

https://github.com/uiuc-arc/aquasense
https://github.com/uiuc-arc/aquasense
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Listing 1.1: Example Prob. Program
1 # Data observations
2 vector x[N] = [3.0,...]
3 vector y[N] = [0.6094,...]
4
5 # Model
6 b0 ~ uniform(-1, 1)
7 b1 ~ uniform(-1, 1)
8 sigma ~ uniform(0, 2)
9 for (i in 1:N)

10 y[i] ~ normal(b0+x[i]*b1, sigma)

2 Example: Sensitivity-Driven Development

Probabilistic programming is an intuitive way to express a statistical model
as a computer program. Listing 1.1 shows such a simple probabilistic program
representing a regression model. Suppose we observed a dataset with pairs of
x and y, and we want to fit a line y = b0 + x * b1 to the dataset, where b0
(the slope) and b1 (the intercept) are unknowns. We write such a probabilistic
program to solve the distributions of b0 and b1 in the program.

In the program, we first specify the prior distributions of intercept b0, slope
b1, and standard deviation sigma as uniform distributions, indicating they are
equally likely everywhere on their support [-1,1] and [0,2] (Lines 6-8). Next,
we specify that each datum y[i] is drawn from a normal distribution with
mean b0 + x[i] * b1 and standard deviation sigma (Lines 9-10). In Bayesian
terms, in each iteration, we update our belief (prior) about the slope, intercept,
and error, upon learning that the datum y[i] follows the specified distribution.
In the end, the program is represented by a joint posterior probability density
f(b0, b1, sigma). Given a probabilistic program, probabilistic systems can auto-
matically compute the joint probability density defined by the program.

Choosing prior parameters. In this program, the developer chose a uniform
prior to reflect the lack of a prior knowledge of b1. However, when choosing the
parameters of the uniform prior - the lower and upper bounds (marked in brown
in Listing 1.1) - the developers are unaware of how such ad-hoc decisions would
affect the final result. Given the program as input, AquaSense can automatically
test the sensitivity of these parameters, which guide developers to adjust the
prior distributions/parameters so that the model’s sensitivity is fitting. We detail
the example at the end of this section.

Sensitivity Analysis with AquaSense. Given the program (Listing 1.1),
AquaSense first performs a pre-analysis to identify the three random variables
and their six prior parameters. AquaSense injects noise to test each parameter’s
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Fig. 2: Density Cube Visualization

sensitivity. For example, to test how the posterior of b1 changes if its upper
bound parameter of the prior 1 is perturbed, AquaSense injects a perturbation
parameter ϵ and updates the prior to b1~uniform(-1, 1+ϵ).

AquaSense measures sensitivity as the distance between the posteriors with
and without perturbation, as in previous works [19]. For simplicity, we use the
Expectation Distance (ED) that measures the absolute difference between the
expectations of posteriors; AquaSense also supports standards such as Total
Variation Distance, Kolmogorov–Smirnov distance [24], and user-defined metrics.
The sensitivity of a random variable X measured in Expectation Distance is

EDX(ϵ) = |EX∼P (0)[X]− EX∼P (ϵ)[X]|,

where EX∼P (ϵ)[X] and EX∼P (0)[X] are the expectations of the posterior distri-
bution of X with and without ϵ added to its prior parameters, respectively.

In the example above, AquaSense would sample evenly-distributed ϵs, whose
range can be supplied by the user or inferred by AquaSense using heuristics. It
calls AQUA [17], the quantized inference algorithm, to run the programs with
and without noise (i.e., ϵ = 0). AQUA would return the approximated pos-
terior distribution density functions, p̂X∼P (ϵ)(x) and p̂X∼P (0)(x), for the pro-
grams with and without noise. Next, AquaSense integrates the approximated
density functions to get the approximated posterior expectation as ÊX∼P (ϵ)[X]

and ÊX∼P (0)[X]. Because AQUA outputs the posterior densities p̂·(·) as piece-
wise constant functions, AquaSense can get around integration with summation.
In the end, AquaSense computes the approximated ÊDX(ϵ). We can show that
ÊDX(ϵ) could converge pointwisely to the exact EDX(ϵ) with more quantization
splits (see Section 4).

AquaSense outputs the sensitivity of the program as an interpolated func-
tion of ϵ. AquaSense can also visualize the distance function by plotting dis-
tance against the noise like the yellow markers in Figure 1. To demonstrate
AquaSense’s accuracy, we also show the true expectation distance computed
manually with a solid blue line in Figure 1. For this simple example, PSense fails
to compute the sensitivity of b1 (See Section 5).

Improving the Program Based on Sensitivity Results. As the function of
difference between posterior expectations with respect to perturbation, a steep
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ED indicates the prior chosen is sensitive to perturbation. In the example above,
as the developer supplies an upper bound parameter (1) to the uniform distri-
bution, the probability will be truncated to zero when b1 is larger than 1. If the
incoming data exhibit a probability distribution that is “substantial” on [1, ∞],
e.g., the part [1, ∞] has more likelihood than the prior support [-1,1], then the
computed posterior will “miss” this part of the likelihood due to the prior. In
Figure 1, AquaSense helps detect that the ED is 0.01 when ϵ is 0.2. This means
if the developer has chosen a different prior b1 ~ uniform(-1, 1.2), the result
expectation of b1 would change by 0.01, which is negligible for uniform(-1,
1). This result indicates the chosen prior parameter is relatively insensitive to
perturbation. In contrast, suppose the sensitivity at ϵ = 0.2 is high, e.g. ED = 1,
which means changing the prior from b1 ~ uniform(-1, 1) to uniform(-1,
1.2) would increase the expectation of the posterior of b1 by 1, so the developer
is advised to modify the prior to b1 ~ uniform(-1, 1.2) in order to capture
the “missing” posterior density of b1 on [1, 1.2]. Sensitivity analysis and prior
updates can be applied iteratively this way until sensitivity is deemed suitable.

In conclusion, sensitivity analysis can help a) expose such misses of density
outside of the prior support and, b) quantitatively measure its severity. Anal-
ogously, sensitivity analysis can also be used to identify other types of poorly-
chosen prior parameters, e.g., mean, standard deviation, and degrees of freedom.

3 Background: Automated Inference Algorithms

The goal of probabilistic programming is to compute the joint probability den-
sity f . To this end, probabilistic programming languages (e.g., AQUA [17], PSI
[15], Stan [6]) are coupled with automated inference algorithms that compute
the density f either exactly or approximately. For example, PSI implements ex-
act inference using computer algebra, computes the posterior symbolically via
p(b0, b1, sigma) = f(b0,b1,sigma)∫

f(b0,b1,sigma)db0,b1,sigma , which requires integration that is of-
ten intractable. The prior work PSense uses PSI to compute posterior distribu-
tions of probabilistic programs, and thus also suffers from intractable integrals.

AquaSense implements sensitivity analysis on top of AQUA’s quantized infer-
ence. AQUA approximates the symbolic joint probability density f(b0, b1, sigma)
with quantized samples, by storing the quantization of f ’s domain and co-domain
in multidimensional arrays. In the example above, AQUA quantizes b0, b1, sigma
into evenly spaced values, e.g., [−1,−0.8, ..., 0.8, 1], when using 10 splits. Then
AQUA computes f(b0, b1, sigma) at all combinations of the variable values, to
obtain a three-dimensional array, called Density Cube. Figure 2 shows a visual-
ization of the Density Cube, with each dimension representing a random variable.
Among the 103 mini-cubes, a warmer color means higher probability. In AQUA,
normalization is reduced to summation over the Density Cube. AQUA outputs
the approximated joint posterior density function, denoted p̂(b0, b1, sigma).

Alternatives to AQUA include computer-algebra-based exact inference like
PSI and sampling-based inference like Stan. Intractability severely limits exact
inference to simple models with few continuous distributions (see Section 5).
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Sampling-based inference are not accurate enough for sensitivity analysis, as
studies have shown [19] [17]. For the particular task of sensitivity analysis, quan-
tized inference is an ideal candidate as it can get around the intractability prob-
lem while being more accurate than sampling-based inference.

4 AquaSense Workflow

Fig. 3: AquaSense Workflow

Input: a Probabilistic Program. AquaSense takes a probabilistic program
in any probabilistic programming language (PPL) supported by StormIR [13]
(which is an intermediate probabilistic programming language), including Stan
[16], PSI [15], Pyro [26], or StormIR itself. See Figure 4 for its syntax.
Noise Instrumentation. Given a program P , AquaSense applies a pre-analysis
to find the random variables and their prior parameters. The bound of noise of
each parameter is user-supplied or computed using a heuristic. For each prior
parameter, it generates a new program, as P (ϵ), by injecting a symbolic noise
variable ϵ at the parameter. AquaSense evenly samples a set of values of ϵ from
its bounds as B.

x ∈ Vars
c ∈ Consts
op ∈ {+,−, ∗, >,...}
d ∈ {Normal,Uniform,. . .}

E := c | x | E[E*] | E op E |d (E*).pdf(E*) |f(E*)
S := x = E |x ∼ d (E∗)|factor(E) |observe(d(E∗),x)

| if (E) S∗ else S∗ | for x ∈ 1..N; {S∗}
P := S+; return x+

Fig. 4: Syntax of StormIR

AQUA Inference. AquaSense employs AQUA [17], the quantized inference
engine, to solve a probabilistic program. AQUA takes a probabilistic program P
and outputs the approximated posterior of a random variable x as a piece-wise
constant function, denoted as p̂X∼P (x).

Fig. 5: AQUA Infer-
ence Example

Figure 5 illustrates an example of AQUA analysis re-
sults. The red line represents the true density that PSI
would calculate, and the gray bars represent AQUA’s
approximation. With AquaSense noise instrumentation,
AquaSense runs AQUA on the program P (ϵ) with quan-
tized values of ϵ, to simulate the program results due to
different ϵ, as {p̂X∼P (ϵi)(x)|ϵi ∈ B}.
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Metrics Calculator. Next, AquaSense computes the sensitivity metrics based
on inference results, e.g., the Expectation Distance (ED) [19], Kolmogorov-
Smirnov statistic [24], Total Variation Distance (TVD) or other user-provided
metrics. For simplicity, we use ED throughout this work. For each ϵi ∈ B,
AquaSense first computes ÊX∼P (0) =

∫
x
x · p̂X∼P (0)(x)dx and ÊX∼P (ϵi) =

∫
x
x ·

p̂X∼P (ϵi)(x)dx, and then computes ÊDX(ϵi) = |ÊX∼P (0) − ÊX∼P (ϵi)|.
Output: Program Sensitivity. Finally, AquaSense interpolates sensitivity as
a function of ϵ. Using ED, it outputs EDX(ϵ) by interpolating {ÊDX(ϵi)|ϵi ∈ B}.
AquaSense allows users to specify the number of ϵ samples and the number of
quantization splits used in AQUA to control the analysis’ time-accuracy trade-
off. This design allows AquaSense to produce accurate sensitivity estimates on
a much wider range of probabilistic programs than existing tools.
Formal Guarantee of AquaSense Accuracy. For continuous PPs with
bounded support, we formally state the convergence of AquaSense’s quantized
sensitivity at any concrete ϵ ∈ B. For discrete PPs, we show in Section 5 with
empirical experiments that AquaSense is exact up to machine imprecision. With-
out loss of generality, we assume AquaSense uses the ED metric; and one can
show the convergence for other metrics (e.g. KS and TVD) analogously.

Theorem 1. Given any ϵ ∈ B, denote AquaSense output as ÊD
N,C

X (ϵ), where
N is number of quantization splits of each random variable and C is the bounded
domain of all the random variables required by AQUA. Let EDX(ϵ) be the exact
sensitivity at ϵ. If the support of all the random variables is a subset of C, then

lim
N→∞

ÊD
N,C

X (ϵ) = EDX(ϵ).

We can prove the theorem using the following lemma from [17].

Lemma 1. Let the posterior density function of the program P computed by
AQUA be p̂N,C

X∼P (x) , which defines the cumulative density function (CDF),
F̂N,C
X∼P (x) =

∫
p̂N,C
X∼P (x)dx. Let the exact CDF of the program be FX∼P (x). Then

by Theorem 1 of AQUA algorithm [17], one can guarantee the convergence in
distribution:

lim
N→∞

F̂N,C
X∼P (x) = FX∼P (x).

Corollary 1. Given that C is a bounded domain containing all the support of
random variables in the program, we can apply the Portmanteau lemma [20] to
get the convergence of approximated expectation to the exact one:

lim
N→∞

ÊN,C
X∼P [X] = EX∼P [X].

Here, ÊN,C
X∼P [X] =

∫
x∈CX

x · p̂N,C
X∼P (x)dx will be computed by AquaSense without

additional approximation; p̂N,C
X∼P (x) is a piecewise constant function (output of

AQUA), and AquaSense can evaluate the integral with summation. The corollary
also holds for ÊN,C

X∼P (ϵ)[X] when we inject a constant value ϵ in the program.
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Proof of Theorem 1. AquaSense employs AQUA to compute the posteriors and it
sets a hyper-parameter N to be the quantization splits for each random variable.
Given that the support of all the random variables is a subset of C, by Corollary 1
and the definition of limits (i.e. the subtraction and absolute rules of limits),

lim
N→∞

|ÊN,C
X∼P (0)[X]− ÊN,C

X∼P (ϵ)[X]| = |EX∼P (0)[X]− EX∼P (ϵ)[X]|.

By definition of ED, we prove Theorem 1.

5 Evaluation

Benchmarks. We evaluate AquaSense on a benchmark suite consisted of 12
probabilistic programs: 7 from PSense [19] benchmarks, 3 from AQUA [17], and
2 new programs; they have a total of 11 discrete and 34 continuous parameters.
We performed the experiments on AMD Ryzen 7 5800X 8-Core CPU @ 3.00GHz
with 32GM RAM and one Nvidia Geforce RTX 3090 with 24GB memory (run-
ning Ubuntu 20.04). AquaSense’s tensor computation is performed on the GPU.
Accuracy Metrics. For each parameter, we evaluated two metrics: the aver-
age absolute error |Err| = 1

|B|
∑

ϵ∈B |EDX(ϵ)− EDtruth(ϵ)|, and average relative

error Err% =
∑

ϵ∈B
|EDX(ϵ)−EDtruth(ϵ)|

|B|EDtruth(ϵ)
, i.e., the average distance (and its ratio)

between AquaSense interpolated ED and true ED. We consider B to be a valid
set of noises with moderate sensitivity to evaluate both tools. The ground truth
of sensitivity EDtruth is computed using two methods: a) PSense, b) manually
computed with the assistance of Mathematica when PSense fails. Computing
the true sensitivity may take hours or days, which adds to the necessity of an
automated tool like AquaSense. We discard the sensitivity below the threshold
1e-6 when computing the errors to tolerate machine imprecision.

5.1 Performance and Accuracy of AquaSense
Table 1 presents AquaSense’s accuracy and performance compared to PSense.
Each row represents a parameter of which AquaSense evaluates the sensitivity.
The first three columns shows the Parameter Properties: “Prog.” shows the
name of the program; “Dist.” shows the distributions in the program, where
prior distributions are underlined; “D/C” shows whether the program is discrete
(D) or continuous (C); “Param” shows the parameter to analyze. For example,
the program “expl_away” contains four discrete, Uniform Integer distributions
(UI), where two of them are priors (UI). Each Discrete Uniform Integer distribu-
tion has two parameters, i.e. the lower and upper bound (lb, ub), so AquaSense
analyzed four parameters for this program.

We run AquaSense doubling #splits from 100 until Err% is below 5% or |Err|
is below 1e-6 (colored in green ), or AquaSense runs out of memory (in red ).
“#spl” (Column 5) shows the largest #splits that produces the corresponding
Err% (Column 7) and |Err| (Column 8). On discrete programs with finite sup-
port, AquaSense uses the cardinality of the distribution support as #spl, de-
noted by Sup. The column “Acc.” shows if AquaSense is accurate enough (Err%
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Table 1: Performance of AquaSense vs. PSense
Parameter Properties AquaSense Accuracy PSense AquaSense Performance

Prog. Dist. D/C Param #spl Acc. Err% |Err| Time(s) Time(s) NI(s) SE(s) Speedup

coins B2 D B, p Sup T 0.00 0.00 1.24 1.38 0.28 1.11 0.90
B, p Sup T 0.00 0.00 1.26 1.42 0.28 1.14 0.89

murder B3×B1 D B, p Sup T 0.00 0.00 1.26 1.26 0.19 1.06 1.00
B, p Sup T 0.00 0.00 1.07 1.23 0.19 1.04 0.87
B, p Sup T 0.00 0.00 1.01 1.33 0.19 1.13 0.76

binomial B1
m D Bm, n Sup T 0.00 0.00 T.O. 1.81 0.36 1.45 ∞

Bm, p Sup T 0.00 0.00 1.76 1.81 0.36 1.45 0.97

expl_away U2
I×U2

I D UI , ub Sup T 0.00 0.00 Err. 1.34 0.26 1.08 ∞
UI , lb Sup T 0.00 0.00 2.27 1.36 0.26 1.11 1.67
UI , lb Sup T 0.00 0.00 2.46 1.35 0.26 1.10 1.82
UI , ub Sup T 0.00 0.00 Err. 1.34 0.26 1.08 ∞

gamma Γ 1 C Γ, α 12800 T 3.62 0.01 158.63 8.64 0.09 8.55 18.36
Γ, β 100 T 2.68 0.01 39.29 1.12 0.09 1.03 35.16

true_obs N 2×N 1 C N , σ 200 T 2.81 0.00 T.O. 2.08 0.04 2.04 ∞
N , µ 200 T 0.07 0.00 1.72 2.17 0.04 2.12 0.79

rect_game U4×U16 C U, lb 200 T 1.88 0.00 T.O. 38.84 0.02 38.81 ∞
U, ub 100 T 3.06 0.01 T.O. 2.66 0.02 2.63 ∞
U, lb 100 T 2.61 0.00 T.O. 2.64 0.02 2.62 ∞
U, ub 200 T 4.20 0.00 T.O. 38.62 0.02 38.60 ∞
U, ub 100 T 4.14 0.00 T.O. 2.63 0.02 2.61 ∞
U, lb 200 T 1.88 0.00 T.O. 38.72 0.02 38.69 ∞
U, lb 100 T 4.98 0.00 T.O. 2.67 0.02 2.64 ∞
U, ub 100 T 4.14 0.00 T.O. 2.63 0.02 2.61 ∞

sgl_reg U3×N 1 C U, lb 100 T 2.38 0.00 T.O. 1.21 0.03 1.18 ∞
U, lb 800 F 6.21 0.01 T.O. 10.56 0.03 10.53 ∞
U, ub 100 T 3.17 0.00 T.O. 1.14 0.03 1.11 ∞
U, ub 100 T 2.20 0.00 T.O. 1.18 0.03 1.15 ∞
U, lb 100 T 2.60 0.00 T.O. 1.12 0.03 1.09 ∞
U, ub 100 T 2.84 0.00 T.O. 1.17 0.03 1.14 ∞

post_pred U1×B2
m C U, ub 400 T 4.48 0.00 T.O. 3.24 0.09 3.15 ∞

U, lb 200 T 4.03 0.00 T.O. 2.21 0.09 2.12 ∞

altermu N 3×N 40 C N , µ 100 T 2.58 0.00 T.O. 1.55 0.17 1.38 ∞
N , σ 100 T N/A 0.00 T.O. 1.55 0.17 1.37 ∞
N , µ 100 T 2.66 0.00 T.O. 1.54 0.17 1.36 ∞
N , σ 100 T 3.32 0.00 T.O. 1.55 0.17 1.38 ∞
N , σ 100 T N/A 0.00 T.O. 1.56 0.17 1.39 ∞
N , µ 100 T 2.58 0.00 T.O. 1.58 0.17 1.41 ∞

tug U2×N 4 C U, ub 1600 T 3.80 0.00 T.O. 6.28 0.35 5.92 ∞
×B40 U, lb 1600 T 4.74 0.00 T.O. 6.33 0.35 5.98 ∞

U, ub 25600 F 77.08 0.00 T.O. 76.65 0.35 76.30 ∞
U, lb 25600 F 11.27 0.00 T.O. 76.70 0.35 76.35 ∞

neural U2×B39
log C U, lb 100 T 2.79 0.00 T.O. 1.51 0.34 1.16 ∞

U, lb 100 T 3.47 0.00 T.O. 1.50 0.34 1.16 ∞
U, ub 100 T 2.51 0.00 T.O. 1.44 0.34 1.09 ∞
U, ub 100 T 4.50 0.00 T.O. 1.46 0.34 1.11 ∞

– Dist.: B: Bernoulli, Blog: Bernoulli-Logit, Bm: Binomial, U : Continuous Uniform,
UI : Discrete Uniform (Integer), N : Normal, β: Beta, Γ : Gamma

– Param: p: flip chance, n: No. of flips, lb/ub: lower/upper bound of Uniform, µ:
mean, σ: standard deviation, α, β: shape parameters.
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is below 5% or |Err| is below 1e-6). Column “PSense Time(s)” shows PSense
execution time in seconds. We report a timeout (T.O.) if it exceeds 10 minutes,
and an error (Err.) if the result finished but not solved to closed form. Column
“AquaSense Time(s)” shows the total time, minus the time to initialize the
GPU. Total time include the noise instrumentation time (“NI(s)”) and sensitivity
evaluation time (“SE(s)”). “Speedup” is AquaSense’s speedup over PSense.
Capability. Our results show that AquaSense successfully computes the sensi-
tivity of all parameters. In comparison, PSense is only able to solve the sensitivity
of 8 out of 11 discrete parameters and 3 out of 34 continuous parameters. We
observe that for most continuous program, PSense failed to solve integrals to
the closed form, which is the fundamental problem of exact inference, meaning
PSense’s capability cannot be improved much by simply allocating more time.
Execution Time and Accuracy. Compared to PSense, AquaSense is on av-
erage faster by 18.10× on continuous models, and for discrete models has sim-
ilar execution time (slower by 11%). The maximum speedup is 35.16× (for the
“gamma” model). For all the discrete models, AquaSense results are exact (with
error smaller than machine imprecision). For 31/34 (91%) continuous parame-
ters, AquaSense has an average relative error less than 5% or an average absolute
error less than 1e-6. Two parameters in “tug” show higher relative error as the
sensitivities are close to zero (<1e−4), but the absolute error is already at around
1e−3. One parameter in “sgl_reg” has higher (6%) relative error for the same
reason. Overall, AquaSense works on many real-world models out of reach of
PSense, and offers orders-of-magnitude speedup at a reasonable cost of accuracy.

5.2 Trade-off between Accuracy and Performance

The number of quantization splits (#splits) controls the trade-off between per-
formance and accuracy of AquaSense. Figure 6 shows AquaSense’s relative error
and execution time w.r.t. #splits. Error and time are averaged over all 34 con-
tinuous benchmarks. Execution time fluctuates when #splits is less than 12800
due to overhead, but grows exponentially afterward as expected. Relative error
decreases exponentially as #splits increase. Our key observation: on average, the
relative error is already small when execution time starts growing exponentially.

To illustrate the trade-off, we pick the two parameters that used the most
#splits in Table 1, i.e. on which AquaSense performed the worst. We plot their
True ED against AquaSense’s interpolations with different #splits. In Figure 7,
the x-axis shows the values of ϵ and the y-axis shows ED. The True ED is shown
in a blue line, and AquaSense results are shown in markers of different styles/-
colors. These plots demonstrate that AquaSense converges as #splits increases.

6 Related Work

Existing sensitivity analysis techniques suffer from scalability and/or precision
problems. PSense [19] is the state-of-the-art sensitivity analysis tool for prob-
abilistic programs. PSense symbolically evaluates integrals that represent the
program’s posterior distribution. This approach works only for small programs,
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and becomes intractable when the program has multiple continuous distributions
(See Table 1). Sound logic frameworks for bounding the sensitivity of probabilis-
tic programs [3,30,1,2] often yield a coarse over-approximation of sensitivity for
soundness. Also, they are not fully automated and require developers’ effort to
implement the proof for general probabilistic programs. Chan and Darwiche [7]
implemented the tool SamIam to compute the sensitivity of belief networks.
However, it only supports discrete distributions.

Sensitivity analysis, as illustrated in our example (Section 2), can help devel-
opers debug anomalies in the model through an iterative process. The previous
methods for debugging probabilistic programs targeted different challenges: [23]
focuses on debugging probabilistic assertion failures, while [8] concentrates on
addressing convergence issues of MCMC. Other approaches [9,10,11,12] focus
on debugging the implementation of the probabilistic programming systems or
machine learning applications. Furthermore, through the lens of statistical mod-
eling, researchers in statistics have proposed various strategies [5,29,31] to im-
prove the model robustness. According to a recent study [18] that systematically
evaluated these strategies, sensitivity analysis can aid developers select the most
appropriate among these strategies.

7 Conclusion

We propose a new system, AquaSense, for sensitivity analysis on real-world prob-
abilistic programs. AquaSense leverages quantized inference to interpolate pa-
rameter sensitivity. Our evaluation on 12 programs with 45 parameters shows
that AquaSense achieved better efficiency and scalability than the baseline.
AquaSense empowers software engineers and data scientists with the ability to
understand and improve the reliability of their probabilistic programs.
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