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Abstract
This paper shows that many applications exhibit execution-
phase-specific sensitivity towards approximation of the in-
ternal subcomputations. Therefore, approximation in certain
phases can be more beneficial than others. Further, this paper
presents OPPROX, a novel system for application’s execution-
phase-aware approximation. For a user provided error bud-
get and target input parameters, OPPROX identifies different
program phases and searches for profitable approximation
settings for each phase of the application execution. Our
evaluation with five benchmarks and four existing transfor-
mations show that our phase-aware optimization on average
does 14% less work for a 5% error tolerance bound and 42%
less work for a 20% tolerance bound.
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1. Introduction
Approximate computing trades accuracy of computation for
savings in execution time and/or energy by leveraging approx-
imation opportunities across the computing stack, including
programming languages[14, 34, 38, 40], compilers[7, 26, 42,
43], runtime systems[9, 18, 21], and hardware[17, 19, 32, 41].
In addition to data-parallel and streaming applications[23,
24, 39] researchers proposed approximation techniques suit-
able for iterative numerical computations, such as iterative
solvers, large scale numerical models, and sparse matrix
calculations[16, 46, 47].

Approximate computing techniques typically introduce
inexactness and/or approximation by transforming compute-
intensive kernels, which we call approximable blocks (ABs).
Furthermore, many approximation techniques expose knobs
to calibrate the approximation levels (ALs), which control the
error or speedup. For instance, loop perforation [26, 43] skips
a fraction of a loop’s iterations, and exposes this fraction as a
knob to control the accuracy/speedup tradeoff.
Outer-Loop Pattern. Many applications follow a compu-
tation pattern in which the majority of computation is per-
formed inside a main loop (we refer to it as the outer loop)
encompassing all the ABs. Examples of outer loops include
timestep loops in scientific simulations, convergence loops in
iterative solvers, or enumerator loops for processing a series
of information blocks (e.g., video frames).

For large applications with multiple ABs, the trade-off
between speedup and error becomes complex. Often the
optimum configuration of ALs in the various ABs are not
obvious, especially if the approximation of internal ABs
influences the number of iterations of the outer loop. Off-line

exhaustive search can be possible only for a small number
of approximate program configurations[43], and the majority
of the previous approaches used various heuristic search
strategies based on representative inputs[7, 14, 26, 38], or
dynamically tuned the ALs based on the observed errors from
the approximated regions[7, 25, 38, 44]. While many of these
techniques identify and leverage properties of specific code
patterns in ABs, they typically apply the same transformation
for the entire execution and/or input. Such fixed optimization
choices may lead to rigid transformed programs that miss
fine-grained optimization opportunities.
Phase-Aware Optimization. For many iterative computa-
tions, the outer loop controls the precision of the final solution.
Here, the iterations of the outer loop naturally segment the
overall application execution into multiple phases. We define
a phase as a segment of execution that has distinct speedup or
error characteristics. For example, a numerical solver execu-
tion can go through an initialization phase, a maturity phase,
and a convergence phase.

Our experimental results show that two different phases
of the computation may generate different amounts of error
for the same level of approximation. This exposes a new
opportunity for optimization algorithms – they can select not
just how much to approximate, but also in which phase to
approximate. We find empirically that for some applications
(such as LULESH[3]), approximating one phase may induce
almost 8X less error than applying the same approximation
in another phase of the execution.
Our Solution Approach. We present OPPROX, a system for
phase-aware optimization of approximate programs. OPPROX
takes as inputs: a program with tunable approximable blocks
and a user-provided accuracy specification, which consists of
(1) a set of representative inputs that exercise the application’s
desired functionality, (2) an accuracy metric that tells how to
compute the difference between the results of the exact and
the approximate execution, and (3) an error budget eb that
specifies how much reduction in the accuracy metric in the
final output the user is ready to tolerate.

OPPROX operates in four conceptual steps. First, OPPROX
identifies different computation phases. Second, OPPROX
models the speedup and error generated due to different levels
of approximation in the individual ABs and in different com-
putation phases using representative inputs. Third, OPPROX
compares the benefits of various approximation settings in dif-
ferent phases and splits the overall error budget eb into phase-
specific error budgets in proportion to the predicted benefits.
Finally, OPPROX formulates phase-specific trade-off space



exploration as a numerical optimization problem and finds the
most profitable approximation settings for each phase using
the phase-specific error budgets as the constraints.

We show that for many applications, both the approxima-
tion level and the phase in which approximation is performed,
have significant contributions towards the final error. Hence,
phase-specific optimal approximation settings can provide
good speedup (which we express here using the number of
instructions executed) even under constrained error budget.
When compared to an oracle but phase-agnostic version from
prior works[43, 44], our approach on average provides 42%
speedup compared to 37% from the oracle version for an error
budget of 20% and for a small error budget of 5% provides
on average 14% speedup compared to only 2% achieved by
the phase-agnostic oracle version.
Contributions. This paper makes following contributions:

1. We introduce the concept of phase-specific approxima-
tion for controlling the approximation error and improve
application speedup.

2. We introduce modeling of application speedup and approx-
imation error based on polynomial regression that captures
the dependency on input parameters and the phase of the
computation.

3. We define the phase-specific approximation space explo-
ration as a numerical optimization problem and present
an algorithm to find profitable configurations for multiple
approximations under a given error budget.

4. We evaluate OPPROX on five benchmarks and four exist-
ing approximations. The results show that phase-aware
approximation becomes very attractive for improving
speedup (especially when operating under low error bud-
get) compared to phase-agnostic approximation from prior
works[43, 44].

2. Example
We explain the motivation for OPPROX and how it works
using LULESH (Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics) as an example. LULESH[3]
is a widely used hydrodynamic application that simulates
the Sedov blast wave problem[37] in three dimensions. It
represents a typical hydrodynamics code that solves the hy-
drodynamics equations by partitioning the equations spatially.
Fig.1 gives an abstract representation of the main computa-
tion part in LULESH. In the main computation, LULESH
iterates through an outer-loop until the simulation reaches a
stable state (i.e., until a condition called the Courant condition
is met). Inside the outer-loop, it computes several physical
quantities. At the end, LULESH reports the final energy for
each of the elements it simulated.
Accuracy Specification. The quality metric for LULESH is
the difference in the final energy from the approximate run
compared to that from the accurate execution and averaged
across all the elements.
Application Profiling. Given an user-provide error bud-
get, OPPROX finds the best configuration to maximize the

speedup of LULESH. We represent the speedup in terms
of the number of instructions executed in the program.

Figure 1: Abstract computation pattern
for LULESH. The while loop iterates until
the simulation achieves stable state.

At first, we profile
LULESH to find the 6
most compute intensive
kernels (lines 5-10 in
Fig.1). Then, OPPROX
applies three approxima-
tion techniques – loop
perforation, loop trunca-
tion, and memoization
(discussed in Sec. 3.2).

Ultimately, we find
approximation in four of these logical functions:
forces_on_elements, position_of_elements,
strain_of_elements and calculate_timeconstraints, did not
lead to either a hang or crash or unusable quality of ser-
vice (QoS) degradation. These four kernels form the approx-
imable blocks (ABs) for LULESH. This process of finding
ABs is analogous to the one in [26]. The approximation
levels (ALs) corresponding to these kernels were exposed as
environment variables and each one can be set to different
levels from 0 to 5 with 0 being the accurate run and 5 being
the run with the maximum approximation.
Phase-Specific Behavior of Approximable Blocks. For
some ABs, as we increase the approximation level, as ex-
pected, we observe application speedup as well as an increase
in QoS degradation, as shown in Fig.2. However, while
running LULESH with different combinations of ALs cor-
responding to different ABs, we observed that the number
of iterations in the outer-loop also varies significantly as can
be seen in Fig.3 — when run without any approximation the
outer-loop iterates 921 times, with some combinations of
ALs it increases to 965 times and as a result slows down the
application instead of speeding it up. The maximum speedup
we observed was 1.34 but at a cost of 38% QoS degradation.
Further, we explored whether approximating only during
some selected duration of the execution would help us to
have a better control over QoS degradation and speedup.
In this example, we divided the outer-loop iterations into 4
phases—each phase comprises an equal number of outer-loop
iterations— and selectively approximated only in one phase.
We show the results in Fig. 4 and Fig. 5, where the different
points within one phase correspond to different combina-
tions of the ALs. We see that approximating in phase-1 can
provide speedup but also drastically degrades the QoS. This
behavior can be explained from the intrinsic nature of the
algorithms involved in LULESH. Approximation during the
initial phases makes it difficult to meet the stable condition
leading to QoS degradation. Approximation in later phases
reduces the impact of such errors as the accurate execution of
the first phase already took the simulation much closer to the
golden values. For example, approximation only in phase-4,
generates negligible error but still can provide some speedup



Figure 2: Both speedup and error
increase with approximation levels of
the blocks in LULESH.

Figure 3: Variation in the number
of iterations made by the outer-loop in
LULESH.

Figure 4: LULESH phase-specific
QoS

Figure 5: LULESH phase specific
speedup

with some approximation settings. Therefore, phase-specific
approximation gives better opportunity to find a suitable
combination for speeding up the application, especially when
operating under low error budget.
Phase-Aware Optimization of Approximate Blocks. OP-
PROX takes several steps to build such phase specific speedup
and QoS degradation model for LULESH as illustrated in
Fig.6. At first, OPPROX instruments the LULESH code by
adding log messages to capture the call-context correspond-
ing to the ABs. Then LULESH is run with different com-
binations of its input parameters (length of cube mesh and
number of regions) and the sequence of unique call-contexts
for the ABs are extracted from the logs. These sequences
are used to classify control flows based on input parameters
and build separate models for each distinct control flows to
capture input-parameter-dependent behavior.

For LULESH, OPPROX automatically divides the exe-
cution into 4 phases. For each phase, it builds polynomial
regression models for speedup and QoS degradation by using
random samples of different combinations of input parame-
ter combinations and ALs for that phase. For LULESH, the
R2 score corresponding to the prediction of the final QoS
degradation and the speedup were 0.94 and 0.99 respectively.
Application-level Optimization. Now, for a user-provided
QoS budget, OPPROX uses optimization to find the best phase
specific ALs. At first, it allocates sub-budget (a portion of
the QoS degradation budget) to each phase in proportion to
the mean value of the ratios of how much speedup is gained
from that phase to the amount of QoS degradation. Then
OPPROX finds the best combination of approximation for
that phase subject to the allocated sub-budget. Any unused
sub-budget from one phase is reallocated to the other phases.
For LULESH, initially sub-budgets allocated to the 4 phases
are in proportion to 0.166, 0.17, 0.265, and 0.399 of the
full budget eb. Using the optimized settings suggested by
OPPROX, for error budgets (eb) of 20%, 10%, and 5%, the
approximate versions of LULESH achieved speedups of 1.28,
1.21, and 1.17 respectively.
3. Opprox
Fig.6 presents OPPROX’s workflow. OPPROX performs an
offline training using execution logs collected from multi-
ple runs of the application on the training inputs (Sec.3.3).
During the training, OPPROX builds two sets of models. The
first set of models predicts the control flow of the application
(including the number of loop iterations) by taking as input

Figure 6: Workflow of OPPROX

the application’s input parameters. To build these models, OP-
PROX uses decision-tree classification (Sec. 3.4). The second
set of models predicts the speedup and QoS degradation of
application by taking as inputs (1) the control flow from the
first set, (2) the application’s input parameters, and (3) the
possible approximation levels for each AB. To build these
models, OPPROX uses polynomial regression (Sec.3.6). At
runtime, OPPROX finds phase-specific approximations for a
user-provided QoS degradation budget. Specifically, it uses
the offline models to formulate and solve a numerical opti-
mization problem that aims to maximize the speedup while
keeping the QoS degradation within the budget (Sec.3.8).

3.1 Opprox Inputs
Application With Tunable Approximation Levels. OP-
PROX relies on the user to identify the ABs and implement
suitable approximation techniques that provides tunable ap-
proximation levels. In general, for compute intensive kernels
the computation time decreases (i.e. speedup increases) with
an increase in the AL. At the same time, the QoS degrades
with an increase in the AL due to the inaccuracies introduced
by the technique, as illustrated in Fig.2 for LULESH. To
choose the ABs, we follow the sensitivity profiling procedure
presented in prior work [26]. In particular, these techniques
filter out the blocks where approximation makes the pro-
gram to crash or results in unacceptable-quality output. As
part of the sensitivity profiling, we try different approxima-
tion techniques on the compute intensive blocks and finally
choose a set of blacks that are both compute intensive and
can withstand certain levels of approximation.
QoS Metric. The Quality of Service (QoS) is an application
specific metric that captures how different are the results from
approximate computing when compared to results produced
by an exact computation, and denote it as δQoS. Some
applications have common domain-specific metrics, e.g.,
for image or video processing applications the QoS can be
the value of Peak Signal to Noise Ratio (PSNR). For the
applications that do not have a domain-specific QoS metric,
we use a default distortion [34], which computes the relative



scaled difference between the outputs generated from an
approximate computation and an exact computation.

3.2 Examples of Approximation Techniques
There are many available techniques [17, 32, 43] that can
be used to approximate an AB. The concept of OPPROX is
generic and can be applied with any approximation technique
that provides multiple ALs for each AB. Here, we assume
that the approximation exposes the variable approx_level,
which controls the approximation level for each of the tech-
niques. In this paper, we analyze four previously proposed
techniques:
Loop perforation: In loop perforation [26, 43], the compu-
tation time is reduced by skipping some iterations, as shown
below. The behavior essentially samples the result space.
f o r ( i = 0 ; i < n ; i = i + a p p r o x _ l e v e l )

r e s u l t = c o m p u t e _ r e s u l t ( ) ;

Loop truncation: In this technique [26, 43], we simply drop
last few iterations as shown in the following example:
f o r ( i = 0 ; i < ( n − a p p r o x _ l e v e l ) ; i ++)

r e s u l t = c o m p u t e _ r e s u l t ( ) ;

Memoization: In this technique [13], for some iterations
inside a loop we compute the result and cache it. For other
iterations we use the previously cached results.
f o r ( i = 0 ; i < n ; i ++)

i f (0 == i % a p p r o x _ l e v e l )
c a c h e d _ r e s u l t = r e s u l t = c o m p u t e _ r e s u l t ( ) ;

e l s e r e s u l t = c a c h e d _ r e s u l t ;

Parameter tuning: In some applications, there exist some
input parameter which can directly be used to control the
accuracy of the computation [21]. For example, in Bodytrack,
the parameters min-particles and the number of annealing
layers is suitable for this purpose. Overall, users can provide
a list of the parameter names and the set of values that the
parameter may take.

Algorithm 1 Finding proper phase granularity
1: app← Application under test
2: thresh← Phase sensitivity threshold for QoS
3: N ← 2 # Number of phases
4: maxDiffPrev = getMaxQoSDiff(app,N )
5: while True do
6: newN=N · 2
7: maxDiffNew = getMaxQoSDif(app,newN )
8: if abs(maxDiffPrev - maxDiffNew)> thresh then
9: N ← newN

10: else
11: Break
12: end if
13: end while

3.3 Sampling for Training Data
OPPROX collects training data by profiling the instrumented
application with different combinations of ALs for each AB
and a variety of representative input parameters provided by
the user. During each run it collects the call-context logs i.e.,
the sequence of ABs executed, the number of instructions
executed by each AB in each iteration of the outer-loop, and
the QoS degradation w.r.t the golden output obtained from
corresponding accurate execution. OPPROX first builds local
models for each AB, hence for each AB, it exhaustively

covers the corresponding AL-space, while executing all
other ABs accurately. Then, to capture the interaction due
to approximations in multiple ABs, random sparse samples
are collected where approximation levels in all the ABs are
arbitrarily set between zero (accurate computation) and the
maximum approximation level. We assume the number of
discrete ALs in each AB are not high (usually between 4-8,
in our case), hence to build good local models, exhaustive
sampling is required. In case, number of discrete ALs are
high, sparse sampling can also be used for the local models.
The training data consists of such sampling for each phase.

Figure 7: FFmpeg: Changing the or-
der of two filters: Deflate and Edge De-
tection, results in significant change in
the QoS degradation.

Figure 8: OPPROX uses decision-
trees to predict input-parameter dependent
control-flow variations.

3.4 Predicting Control-Flows
Application’s control-flow, i.e., the sequence of executed ABs
may change depending on the input-parameters resulting in
different speedup and QoS degradation characteristics. For
example, Fig. 8 presents a case in which, depending on the
value of the input parameter in_param, the application can
execute two different control-flow paths (i.e., two different
sequences of ABs). Fig.7 shows that swapping the order
of two ABs in FFmpeg (edge detection and deflate filters)
drastically changes the QoS degradation.

OPPROX trains a decision tree classifier model [30] using
the call-context logs that are obtained from executing the
program on the training inputs. The model can predict the
control-flow that the application takes for a given combination
of input parameters. Later, for for each unique control-flow of
the application, OPPROX creates separate predictive models
for speedup and QoS degradation (Sec. 3.6). An ideal training-
set should capture all the distinct control-flow paths that can
be encountered in the production.
3.5 Identifying Phase Granularity
The QoS degradation of a variety of applications depends
not only on the ALs in the ABs but also on the phase of
application’s execution in which the approximation was done.
Before constructing the models, OPPROX first determines the
number of logical phases N that the application’s execution
should be divided into. While, in general the entire execution
of the application might perform distinct set of tasks such
as initialization, warming-up, computation, epilogue etc.,
OPPROX only focuses on the main computation inside the
main outer-loop1.

1 We identify such loops by manually inspecting the source code. However,
automatic identification is also possible, e.g., selecting the most compute
intensive loop using the loop-profiling feature of Intel C++ compiler.



Algo. 1 presents how OPPROX searches for the appropri-
ate number of phases. First, it divides the total number of
iterations (I) in the outer-loop intoN = 2 equal-sized phases,
each consisting of approximately I/N loop iterations2. Sec-
ond, the algorithm executes the application multiple times,
applying different approximation settings within one phase
at a time, and measures the speedup and QoS degradation
at the end of each execution. The helper getMaxQoSDiff
function (1) runs the application with N phases and multi-
ple approximation settings and (2) calculates the maximum
difference between the mean QoS degradations of any two ex-
ecutions, which correspond to approximations in consecutive
phases. Third, the algorithm continues increasing the number
of phases while the difference between the QoS degradations
between the consecutive phases is above the user-provided
threshold (Algo. 1, lines 8-12).

While a large number of phases N can capture the re-
lationship between the phases and the QoS degradation or
the speedup at finer level, it would increase the size of the
search space (and the training time) exponentially. The user-
specified threshold for the difference in results between two
consecutive number of phases helps bound this value of N .
3.6 Performance and Error Models
Estimating Iteration Counts. We define the speedup in
terms of the computation or amount of work done, i.e., the
total number of instructions executed as follows:

S =
#(instructions executed in accurate run)

#(instructions executed in approximate run)

As a result of approximation, each AB gets some speedup.
However, the final speedup of an application depends not
only on the local speedups gained at the ABs, but also the
number of iterations of the outer loops encompassing those
ABs. Recall, the number of iterations of these outer-loops can
be constant (e.g., in a predefined timestep based simulation),
input parameter dependent (e.g., in FFmpeg, depends on
the number of frames in a video) or can depend on internal
approximations (e.g., in LULESH). OPPROX extracts the
number of iterations of the outer-loop by calculating how
many times a call-context sequence of ABs has repeated in
the execution log. OPPROX builds estimators for the number
of outer-loop iterations using polynomial regression [29],
which has the approximation settings of the internal ABs and
input parameters as the modeling input.
Modeling Speedup and QoS Degradation. Approximation
levels at the ABs and the corresponding phases dictate
how much speedup can be obtained and how much QoS
degradation would be incurred. For each unique control-flow
path, OPPROX builds separate models to capture the phase-
specific application speedup and QoS degradation, using a
two-step approach.

The first step builds local models, which capture the
speedup or QoS degradation when only one of the ABs is
approximated. Thus, each AB has a local speedup and QoS

2 When I is not divisible by N , the remainder is added to the final phase.

degradation model per phase. These models take as input the
ALs for the particular AB and input-parameter combination
provided to the application. For example, for a approximable-
block AB1 with a1 as the knob for AL and input-parameter
combination P , the local speedup model for AB1 is captured
as: s1(a1, P ).

The second step builds models to capture the combined
effect on overall speedup or QoS degradation when multiple
ABs are approximated simultaneously. These models use the
prediction (speedup or QoS degradation) from the models
from the first step as inputs. For example, for an applica-
tion with two approximable-blocks AB1 and AB2 with local
speedup models s1 and s2 respectively, the overall speedup
model is captured as: S(s1, s2). As previously mentioned,
OPPROX uses polynomial regression to build both local and
overall models. For example, the previously mentioned over-
all speedup S would be modeled in a degree-2 polynomial
regression as: c0 + c1s1 + c2s2 + c3s1s2 + c4s1

2 + c5s2
2,

where the coefficients c0,...,c5 are computed by the regression
algorithm using the training data.

The final QoS degradation or speedup also explicitly
depends on how many times each AB is called i.e., how many
times the outer-loop executes. This is because, as for the QoS,
the more number of times an AB is called, the more QoS
degradation it is likely to create due to approximation error.
For speedup, it is slightly more complex, an approximation
of an inner AB may actually increase the number of iterations
of the outer-loop and thus decrease the speedup. Let us take
an example of an outer-loop with only one AB inside. Let
W be the amount of work done by this block per iteration.
After approximation the amount of work performed by this
block becomes w resulting in a local speedup of: x=W /w.
Say, at the same time the number of iteration of the outer-
loop changed from I to i. due to approximation. Then, the
overall speedup of the application would be: (I ·W )/(i · w)
or I · x/i. Thus the overall speedup would depend not only
on x but also on the change in the number of iterations in
the outer-loop i. Hence, we first use polynomial regression
to build a highly accurate estimator for outer-loop iterations
and then explicitly use the estimated value as an input feature
while building our overall speedup and QoS models to ensure
at least one input variable will closely dictate the output.
Confidence Analysis of Models. There might be errors
in these machine learning based models itself because the
training data does not exhaustively capture all the possible
scenarios due to combinatorial explosion. To address this
problem, OPPROX calculates a confidence interval of its
models by adapting the approach from [28]. For example,
if OPPROX predicts Q as the QoS degradation value for a
particular approximation combination and p fraction of the
time modeling error remains within e%, then it interprets that
actual QoS degradation for that approximation settings can be
anywhere between [Q− e,Q+ e] which form the confidence
interval. Here p is a means of controlling the confidence



in the prediction. To remain conservative, OPPROX use the
upper limit of the p=0.99 confidence interval as the effective
QoS degradation and use the lower limit in case of speedup
estimation. This ensures that we avoid the risk of going over
the QoS degradation budget.

3.7 Improving Modeling Accuracy
To reduce noise during polynomial regression based model-
ing, OPPROX uses Maximal Information Coefficient (MIC)
[33], to determine if an association exists between any given
input feature, which could be an input parameter to the appli-
cation or the approximation level of any AB, and the target
output of the model, which could be the number of iterations
of the outer loop, the degradation of QoS, or the speedup of
the AB. Features not having an association are filtered out.

After this filtering, OPPROX gradually increases the degree
of the polynomial regression until it finds a good R2 score
with 10-fold cross validation. In 10-fold cross-validation, as
per standard practice, the original training data is randomly
partitioned into 10 equal size subsets. Of the 10 subsets,
9 subsets are used for training and the remaining single
subset is used for testing the model. This process is then
repeated 10 times, with each of the 10 subsets used exactly
once as the test data. The 10 results from the folds are
then averaged to produce a final estimation. Cross-validation
avoids overfitting.

OPPROX checks if the models achieve a target accuracy
(i.e., a good R2 score). The value of this target accuracy is
a design choice, e.g., a value greater than 0.9 may denote a
good model. If OPPROX finds that the models are not accurate
enough for the entire input data set, it breaks the input into
smaller subcategories and attempts to build a model for each
subcategory. To create the sub-models, OPPROX splits the
values of a feature put in magnitude order into k subsets, and
learns separate models for each subset.

3.8 Optimization Framework
The final goal of OPPROX is to find the optimal settings for the
ALs for each phase of the application that would maximize
the speedup of the application, for a given QoS degradation
budget QoSb specified by the user. The overall optimization
algorithm framework is shown in Algo. 2.
Phase Specific Allocation of QoS Degradation. By analyz-
ing various applications we found that the same approxima-
tion in different phases of the execution achieves different
speedups, and causes different levels of QoS degradation. For
the purpose of our optimization we define a metric called
return on investment (ROI) of QoS degradation budget for a
phase ph as follows:

roiph =
1

m

m∑
i=1

Si

δQoSi

(1)

Here, m is the number of available training data points
for the phase ph. Si is the speedup for the ith data point and
δQoSi is the corresponding QoS degradation. Intuitively, the
ROI value for a phase gives a statistical measure of how much

benefit we are likely to get at the expense of certain amount
of QoS degradation for that phase.

OPPROX divides the overall QoS degradation budget
across all the phases of execution in proportion to their corre-
sponding ROI values. Thus, for a given a QoS degradation
budget QoSb, the share of the budget allocated to the phase
ph would be: normROIph · QoSb, where normROIph is
the ROI of this phase normalized by the sum of the ROIs of all
the phases. This is a policy decision of how to divide the over-
all QoS degradation and OPPROX can accommodate other
policies than the one described above. OPPROX searches the
configuration space among the phases in the decreasing or-
der of their ROI values and any QoS budget left-overs are
redistributed among the remaining phases.

Algorithm 2 Finding phase specific approximation settings
1: QoSb← Total QoS degradation budget
2: models← Phase specific approximation models
3: sortedPhases← sortPhasesBasedOnROI()
4: for all (phase in sortedPhases) do
5: normROI← calculateNormalizedROI()
6: phaseQoSBudget←QoSb · normROI
7: phaseModel← models[phase]
8: consumedQoS = optimizePhase(phaseModel, phaseQoSBudget)
9: QoSb← QoSb - consumedQoS

10: end for

Finding the Optimal Settings for Each Phase. OPPROX
uses the QoS degradation budget allocated to each phase to
find the optimum settings for approximation for that phase
that would maximize the speedup.

Assume there are M , ABs and A = (A1, . . . , AM )
denotes the configuration of the ALs for these blocks for
a phase ph. The values each Ai can take are the discrete
approximation levels for the corresponding block. Let S(A)
be the speedup of the application, and δQoS(A) be the
QoS degradation as a result of these approximations. Thus,
OPPROX’s goal is to find the optimum value of A for phase
ph that will maximize the speedup while keeping the overall
QoS degradation within the budget:

maximize
A

S(A)

subject to δQoS(A) ≤ normROIph ·QoSb

OPPROX estimates the value of S and δQoS for each A
using the models previously described in Sec. 3.6 and solves
a (polynomial) numerical optimization problem. This step is
represented as the function optimizePhase in Algo.2.

4. Experimental Methodology
For evaluation, we use five representative applications and
benchmarks from a wide variety of domains. Here, we
describe these applications and implementation of OPPROX.

4.1 Description of the Applications
LULESH: We provided details for LULESH in Sec. 2.
CoMD: CoMD[1] is a representative application for a broad
class of molecular dynamics(MD) simulations. In general,
the method of MD simulation involves the evaluation of the
force acting on each atom due to all other atoms in the system



Apps Input parameters Approx. techniques used Search space
(# approx. settings)

LULESH length of cube mesh, # regions loop perforation, loop truncate,
memoization

699,840

FFmpeg frames per second, video dura-
tion, bitrate, filters

loop perforation, memoization 207,360

Bodytrack # annealing layers, # particle,
# frames

loop perforation, input-tuning 1,966,080

PSO Swarm size, dimension loop perforation, memoization 14,400
CoMD # unit cells, lattice parameter,

# timestep
loop perforation, loop truncate 229,500

Table 1: Application specific input parameters, approximation techniques used and
number of combinations explored

and the numerical integration of the Newtonian equations of
motion for each of those atoms.
QoS Metric: At the end of the simulation, the energy of
the system is expressed in terms of the potential and kinetic
energy of the atoms. As the QoS metric, we use the difference
in potential and kinetic energy compared to the accurate
execution and averaged across all the atoms.
Computation Pattern: CoMD’s main computation is sur-
rounded by an outer loop which iterates for the number of
simulation timesteps provided as the input. This outer loop
internally calls several compute intensive functions. CoMD
outer loop represents a classic timestep loop in scientific
computations where the number of timesteps is an input pa-
rameter. The outer loop iteration for CoMD does not depend
on any other input parameters or the ALs of the internal ABs.
FFmpeg: FFmpeg[2] is a widely used video processing
toolkit which provides a large number of filters to process a
video, like edge detection filter, blur, color balance, deshake
etc. These can be combined in various ways for a specific
type of processing.
QoS Metric: We use PSNR (peak signal to noise ratio).
Computation Pattern: FFmpeg passes encoded video to a
decoder which produces uncompressed frames (raw video).
Inside an outer loop, FFmpeg applies a series of filters on each
frame to process the video in various ways. After filtering,
the frames are re-encoded and passed to a multiplexer, which
writes the encoded packets to the output file. FFmpeg outer
loop represents typical streaming analytics loops. The number
of iterations depends on the input parameter, the number of
video frames, and not on the ALs.
Bodytrack: Bodytrack[8] is a computer vision application
that uses an annealed particle filter and videos from multiple
cameras to track the movement of a human through a scene.
QoS Metric: QoS metric is the distortion of the vectors
that represent the position of the body parts. The weight
of each vector component is proportional to its magnitude.
Vector components which represent larger body components
therefore have a larger influence on the QoS metric than
vectors that represent smaller body components .
Computation Pattern: For every frame of the input videos,
the application extracts the image features and computes the
likelihood of a given pose in a annealed particle filter. The
main computation is inside an outer convergence loop. Inside
the loop, the likelihood weight for each particle is calculated
and if that results in an invalid model, particles are removed.
Bodytrack’s outer loop is also a type of convergence loop.

The number of iterations depend on the number of annealing
layers and not on the internal ALs. However, when the value
of min-particles is small, the iteration count also depends
on the ALs.
Particle Swarm Optimization: Particle swarm optimization
(PSO)[22] is a population-based stochastic approach for
solving continuous and discrete optimization problems. We
used an implementation for continuous functions (called
the objective functions). PSO has similarity to evolutionary
computation where the algorithm is expected to move the
swarm of particles toward the best solutions.
QoS Metric: It is the average difference of the values of the
best fitness vector calculated for each particle in the swarm.
Computation Pattern: PSO starts with a population of candi-
date solutions, also called particles. The main computation is
inside an outer-loop which iteratively improves a candidate
solution until the convergence criterion is met. In each itera-
tion, the computation computes new positions and velocities
of the particles in the search space.
4.2 Implementation Details
In this section we briefly discuss some of the design choices
and implementation details. Table 1 summarizes the total
number of approximation combinations we collected. We had
4 ABs for LULESH and Bodytrack, and 3 ABs for CoMD,
PSO and FFmpeg. Depending on the application and the
AB, we used between 4 to 8 different approximation levels
and up to 27 different input combinations. While trying to
find optimal number of phases for dividing the application
execution, we explored up to N=8 phases. For regression
models, we found the polynomial degrees varied between 2
to 6 for all the models in our applications corresponding to
an R2 score greater than 0.9.

What happens at the runtime. For each application, the
trained models are stored as Python’s serialized pickle for-
mat in designated locations. User submits the job with a tar-
get error budget in a configuration-file. Then a runtime-script
loads the corresponding models and finds the best phase-
specific approximation settings for that error budget using
OPPROX’s optimizer on the trained-models and invokes the
SLURM native scheduler. The phase-specific approximation
settings are passed to the job via environment variables; spec-
ifying the approximation level for each AB during each phase
of the execution.

5. Evaluation
We now present the experimental results. We performed all
evaluations on 64-bit Intel Xeon Phi machines with 64GB
of RAM running RHEL 6.6, 64-bit OS. Following the same
approach as [21, 25, 43, 44], we ran all the applications in
serial mode using one thread. Applications were compiled
with gcc version 4.8.4 and with O3 optimization.
5.1 Phase Specific Behavior
First, we show how the QoS degradation and speedup varies
as we turn on approximation in different phases. To show a



(a) CoMD (b) PSO (c) Bodytrack (d) FFmpeg (Y-axis is
PSNR, higher is better)

Figure 9: Phase specific QoS degradation

(a) CoMD (in log scale) (b) PSO (c) Bodytrack (d) FFmpeg

Figure 10: Phase specific speedup

(a) Bodytrack

(b) LULESH

Figure 11: Characteristics of QoS degradation for exe-
cution divided in to 2, 4, and 8 phases

visually comparable phase-specific behavior, for all the ap-
plications we divide the main computation into 4 phases of
equal length. Here a phase is defined in terms of the num-
ber of iterations in the main outer loop. Fig.9 presents QoS
degradation and Fig.10 presents the speedup characteristics
resulting from different combination of approximation levels
in the ABs. Corresponding results for LULESH is in Fig.4
and Fig.5. Each point in the plots represents a distinct ap-
proximation setting, i.e., a different configuration of ABs.
The X-axis is divided in segments showing the QoS degrada-
tion and speedup characteristics when approximations were
applied only to that phase, letting all other phases run accu-
rately. The last segment (marked as “All”) shows the behavior
when approximation was turned on for the entire duration
of the application execution. For all the applications except
FFmpeg, Y-axis shows the percentage of degradation in QoS
(lower is better). For FFmpeg, Y-axis is the value of PSNR
(Peak Signal to Noise Ratio) and a higher value represents
lower approximation error. The Y-axis in Fig.10a for CoMD
speedup is in log scale.

5.1.1 Error Characterization
For all the applications we studied, approximation in the first
phase introduces maximum approximation error resulting
in significant QoS degradation. For LULESH and CoMD,
error introduced in the first phase of the execution is so
significant that its effect on QoS degradation is comparable
to the execution where approximation is turned on for the
entire duration. It can also be observed that as we turn on
the approximation in the later execution phases, its impact
on QoS degradation diminishes. Approximation during the
fourth phase of the execution creates almost insignificant QoS
degradation. This behavior can be explained from the intrinsic
nature of the algorithms involved in these applications as
discussed in the context of LULESH (Sec. 2).
CoMD. Approximation during the initial phases puts the
particles further from their accurate positions with vastly
inaccurate values of kinetic and potential energies. Inaccurate

positions and energy values create a ripple effect during the
rest of the simulation and QoS degrades. The magnitude of
the inaccuracies and the scope for their propagation is reduced
if approximations starts only in the later phases.
PSO. PSO iteratively converges towards the best solution
starting from a set of initial candidate solutions (particles).
The quality of the solution set being explored in the current
iteration depends on the accuracy of the solutions from the
previous iterations. Hence, inaccuracies in the first few phases
have significantly higher impact on QoS.
Bodytrack. Like for PSO, Bodytrack’s QoS degradation is
less affected if approximation is turned on at later phases.
FFmpeg. The outer loop iterates over the video frames ap-
plying multiple approximated filters on each frame. Although
this application runs the same set of filters on each frame, the
approximations in the first phase significantly reduce PSNR
because the encoding procedure (which follows the filter ex-
ecution) induces the dependency between the neighboring
frames. For example, the second encoded frame only keeps
the information relative to the first frame. Therefore, any error
introduced in the first few frames propagated throughout the
remaining frames (out of 150 frames in total) leading to a
phase-dependent PSNR degradation.

5.1.2 Performance Characterization
From Fig.10, we see that phase-specific behavior for speedup
have two distinct patterns. Either the speedup drops if we
trigger approximation in later phases (e.g., in Fig.5 for
LULESH and in Fig.10b for PSO) or speedup remains almost
unaffected with respect to which phase is being approximated
(e.g., for CoMD, Bodytrack, FFmpeg in Fig.10a, Fig.10c,and
Fig.10d, respectively). Thus, for applications in the first
category, it is most beneficial to approximate in the later
phases, rather than uniformly, because speedup remains the
same while QoS degradation is lower in the later phases.

5.1.3 Changing Phase Granularity
Fig.11 presents how changing the number of phases affects
the QoS degradation for Bodytrack and LULESH as we



Figure 12: Prediction of QoS degradation

Figure 13: Prediction of speedup

Figure 14: For different QoS budgets, comparison be-
tween OPPROX and phase-agnostic exhaustive search used
by prior works [43, 44] as the idealized or oracle scheme.

uniformly divide the execution into 2, 4, and 8 phases. For
both applications, when execution is divided into 2 phases,
it is preferable to use aggressive approximation in phase-2
instead of phase-1 (especially when operating under low QoS
degradation budget). The behavior is similar when execution
is divided into 4 phases and it provides more fine granularity
for controlling QoS degradation. However, when we divide
the execution in 8 phases, the distinction between the QoS
degradation coming from different phases becomes blurry
– e.g., in the cases of Bodytrack (phase-3 and phase-4 have
almost the same QoS degradation) and LULESH (phases 5 to
8). Thus, identifying proper phase granularity is important.

Fig.15a and Fig.15b present how phase specific QoS degra-
dation and speedup characteristic varies for four different
input parameter combinations (described in Sec. 4) for Body-
track and LULESH, when the execution is divided into 4
phases. Each point represents a particular approximation set-
ting for that phase and the color denotes the corresponding
input parameter combinations. For both the applications, for
all the four input combinations, we see a consistent trend in
the behavior of QoS degradation and speedup with respect
to various phase-specific approximations. This validates that
the benefits of phase-aware approximation is not tied to any
particular input parameter combination.

5.2 Evaluation of Modeling Accuracy
Fig.12 and Fig.13 show the result of the evaluation of the
prediction accuracy of the models built by OPPROX. We ran-
domly partitioned data into two equal-sized non-overlapping
parts. The first part was used for training and other for testing.
In the X-axis shows the actual value and the Y-axis shows the
predicted value from our models. The diagonal line indicates
a perfect prediction and deviations from this diagonal line
indicates prediction error. For QoS degradation, as shown
in Fig.12 OPPROX makes reasonably accurate predictions as
bulk of the points are close to the diagonal line. QoS degra-
dation for FFmpeg (which is PSNR) and PSO are highly
predictable. However for LULESH, Bodytrack and CoMD,
the model shows higher inaccuracies. Speedup models are
also very accurate for all the applications as shown in Fig.13.
Overhead w.r.t phase granularity: Table 2 summarizes OP-
PROX’s total training time and the time to find the phase-

specific optimized approximation settings as we vary the
phase granularity from 1 (i.e., phase-agnostic) to 8. The train-
ing is performed offline and is done only once, while opti-
mization is done before scheduling the job with production
inputs. The optimization time in Table 2 includes the total
time for loading the models, optimizing, and scheduling the
tasks. OPPROX’s phase-specific optimization gives a trade-off
in terms of the number of phases to use. Smaller number of
phases incur lower overhead while higher number of phases
give better control over speedup and approximation error.
However, for applications that run for a long duration, such
overheads become negligible compared to the benefits from
the speedup. Moreover, most of the optimization overhead
can be offset by precomputing the results for many common
input parameters and error budgets.

5.3 Evaluation of Optimization Framework
To show the effectiveness of our proposed phase-aware op-
timization technique, we compare OPPROX with a phase-
agnostic optimization through exhaustive search. Such phase-
agnostic exhaustive search was used previously [43, 44] as
an idealized oracle technique. Thus, essentially we compare
OPPROX with the best achievable result by the phase-agnostic
optimization. Phase-agnostic exhaustive search goes over all
combinations of approximation settings to find which setting
provides maximum possible speedup while keeping the corre-
sponding QoS degradation within the budget. However, such
phase-agnostic search does not consider any phase-specific
approximations and applies the chosen approximation set-
ting through the entire execution. Fig.14 presents evaluation
using 3 levels of the QoS degradation budget: large-budget
(20% degradation), medium-budget (10% degradation) and
small-budget (5% degradation). Since for FFmpeg, QoS is
calculated in terms of PSNR where a higher value signifies
less error, we use target PSNR values of 10, 20, and 30 as the
large-budget, medium-budget, and small-budget respectively.
In Fig.14, within (), we mention the number of phases used.
Small Error Budget (5%). Phase-specific approximation
improves performance for all benchmarks, while the base-
line (phase-agnostic) approximation is unable to obtain any
speedup in 4 of the 5 applications. For example, in case
of FFmpeg, OPPROX achieved 37% speedup while phase-



(a) Bodytrack (b) LULESH
Figure 15: Phase specific characteristics of QoS degradation and speedup for different inputs. Each point
represents an approximation setting. Points from different input combinations have different colors.

# Phases 1 2 4 8 1 2 4 8
Apps Training time(sec) Optimization time(sec)
LULESH 274 281 379 1682 3.8 5.9 10.7 19.3
FFmpeg 297 307 497 2091 2.3 3.6 6.1 10.1
Bodytrack 373 471 1347 16038 6.9 13.2 22.1 41.7
PSO 165 173 291 3347 1.3 2.4 4.6 7.9
CoMD 226 271 419 5203 1.3 2.1 3.7 7.1

Table 2: Variation of OPPROX’s training and optimiza-
tion times w.r.t phase granularity.

agnostic search achieved nothing. as it could not find any
approximation setting that would create lower than user-
specified QoS degradation. On average, OPPROX gave 14%
speedup while phase-agnostic search gave only 2%.
Medium Error Budget (10%). OPPROX improves perfor-
mance for all benchmarks because OPPROX can perform
search at a finer (phase) granularity, while phase-agnostic
search was able to provide speedup only for LULESH and
CoMD. Approximating CoMD during phase-3 and phase-4
creates insignificant QoS degradation (Fig.9a) but the share of
speedup achieved is similar to phase-1 and phase-2 (Fig.10a).
Thus, OPPROX can set a higher approximation level for phase-
3 and phase-4 to increase speedup and choose a lower ap-
proximation level for phase-2 or phase-1 to keep the QoS
degradation within budget.
Large Error Budget (20%). OPPROX can provide signifi-
cant speedup (up to 75% for CoMD) for all the applications.
However, for Bodytrack and FFmpeg, phase-agnostic search
is able to find a better setting that gives higher speedup. For
FFmpeg, the large budget is large enough to accommodate all
possible approximation settings for the entire execution of the
application. For Bodytrack, our model for QoS degradation
computes a less precise prediction, which is a consequence
of conservative confidence intervals that OPPROX computes
around the predicted values.

These results jointly show that OPPROX can successfully
use the concept of phase-specific approximation to fine-tune
and control the error budget giving better speedup compared
to phase-agnostic approximation method.

6. Related Work
We discuss related software-based approximations.
Software Systems for Approximation. Researchers have
presented programming language support, including static
analyses[11, 12, 27, 40, 48] and dynamic analyses[10,
26, 36] that quantify the effects of approximation. Re-
searchers also proposed various (phase-agnostic) compiler
transformations[13, 21, 26, 39, 43].

PetaBricks autotuner[5, 6], automatically finds configu-
rations of alternative function implementations for a given
QoS budget. An extension in [15] identifies classes of similar
inputs using two-level clustering and applies different approx-
imations for each input class. These are complementary to
our approach as OPPROX can learn the control-flow of the
input-optimized program generated by PetaBricks and then
apply its phase-specific optimization.

Models for Input-Aware Optimization. In an early work,
Rinard [34, 35] presented an approach that builds linear-
regression models for various values of the accuracy knobs,
but for individual inputs. More recently, Capri[44] constructs
generalized models of performance and accuracy of the com-
putation using M5 estimation algorithm[31]. The main differ-
ence between Capri and OPPROX is that they do not exploit
the additional control coming from execution-phase-specific
approximation levels. Laurenzano et al.[25] derive and runs
canary inputs (smaller versions of the full inputs) to deter-
mine the approximation level based on input content, while
focusing on streaming and data-parallel applications. In con-
trast, OPPROX uses input-parameters to predict control-flow
variations that impacts performance and accuracy. OPPROX
can also benefit from using canary inputs to more accurately
model the phase-specific behaviors.
Runtime Systems and Middleware for Approximation.
Existing adaptive techniques support on-line monitoring
of accuracy[7] and latency[20, 21]. Approximation-aware
runtime systems have also been used to improve resilience[4,
45], guide the execution of data-parallel applications[18, 38,
39], and reduce communication cost in parallel programs[9].
While adaptive mechanisms track program execution, they
incur runtime overhead to dynamically build models and do
not build specialized phase-aware models. In contrast, we
build phase-aware models through offline training.
7. Conclusion
We introduce phase-aware approximation for finding the best
approximation settings for different phases of the compu-
tation. We present OPPROX, a system that models speedup
and QoS degradation corresponding to phase-specific approx-
imation settings and maximize the speedup subject to an
acceptable QoS degradation. OPPROX is compatible with
many prior approximation techniques. Our evaluations show
that, compared to oracle phase-agnostic baseline used by
prior works, OPPROX can significantly improve performance,
especially for tight QoS degradation budgets.
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