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When a computational task tolerates a relaxation of its specification or when an algorithm tolerates the effects

of noise in its execution, hardware, system software, and programming language compilers or their runtime

systems can trade deviations from correct behavior for lower resource usage. We present, for the first time,

a synthesis of research results on computing systems that only make as many errors as their end-to-end

applications can tolerate. The results span the disciplines of computer aided design of circuits, digital system

design, computer architecture, programming languages, operating systems, and information theory. Rather

than over-provisioning the resources controlled by each of these layers of abstraction to avoid errors, it can be

more efficient to exploit the masking of errors occurring at one layer and thereby prevent those errors from

propagating to a higher layer.

We demonstrate the potential benefits of end-to-end approaches using two illustrative examples. We

introduce a formalization of terminology that allows us to present a coherent view across the techniques

traditionally used by different research communities in their individual layer of focus. Using this formalization,
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we survey tradeoffs for individual layers of computing systems at the circuit, architecture, operating system,

and programming language levels as well as fundamental information-theoretic limits to tradeoffs between

resource usage and correctness.

Additional Key Words and Phrases: Approximate computing, error efficiency, cross-layer optimization.
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1 INTRODUCTION
Computing systems solve specific computational problems by transforming an algorithm’s in-

puts to its outputs. This, as well as counteracting the effects of noise in the underlying hardware

substrate [16, 105, 193], requires resources such as time, energy, or hardware real-estate. Because

of the increasing pervasiveness of computing systems and the diminishing returns from perfor-

mance improvements of process technology scaling [7, 23, 157], resource efficiency is becoming an

increasingly important challenge.

Computing systems are reaching the fundamental limits of the energy required for fully-reliable

computation [16, 133]. At the same time, many important applications have nondeterministic

specifications or are robust to noise in their execution. We dedicate the next section of the review

(Section 2) to providing an overview of application domains with quality versus resource usage

tradeoffs and we provide two detailed examples in Section 3. They thus do not necessarily require

fully-reliable computing systems and their resource consumption can be reduced. For instance,

many applications processing physical-world signals often have multiple acceptable outputs for a

large part of their input domain. Because all measurements of analog signals have some amount

of measurement uncertainty or noise and digital signal representations necessarily introduce

quantization noise, it is not always necessary to perform exact computation on data resulting from

uncertain measurements of real-world physical signals.

These observations about the fundamental limits of computation and the possibility of trading

correctness for resource usage have always been implicit in computing systems design dating back

to the ENIAC [233], but have seen renewed interest in the last decade. This interest has focused

on techniques to trade precision, accuracy, and reliability for reduced resource usage in hardware.

These recent efforts harness nondeterminism and take advantage of application tolerance to coarser

discretization in time or value (i.e., precision or sampling rate), to obtain significant resource savings

for an acceptable reduction in accuracy and reliability. These techniques have been referred to in

the research literature as approximate computing and include:

• Programming languages to specify computational problem and algorithm nondeterminism.

• Compilation techniques to transform specifications which expose nondeterminism or flexi-

bility, into concrete deterministic implementations.

• Hardware architectures that can exploit nondeterminism exposed at the software layer, or

which expose hardware correctness versus resource usage tradeoffs to the layers above.

• New devices and circuits to implement architectures that exploit or expose nondeterminism

and correctness versus resource usage tradeoffs.

In the same way that computing systems that only use as much energy as is necessary are referred to

as being energy-efficient, we can refer to the computing systems investigated in this survey as being

error-efficient: they only make as many errors as their end-to-end applications can tolerate [215].
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1.1 Context of this survey
This survey explores research results in hardware and software systems in which the system’s

designers or end-to-end applications can trade lower resource usage for increased occurrence of

deviations from correctness. These deviations from correctness may occur within an individual

layer of the system (e.g., at the circuit layer), or they may occur in the context of an end-to-end

computing system application (e.g., a microcontroller-based pedometer application driven by sensor

measurements from an accelerometer). Existing related surveys [10, 77, 145, 149, 191, 235] present

valuable analyses of techniques at subsets of the layers of computing systems. These existing

surveys provide complementary coverage of the relevant literature but neither introduce any

broadly-applicable mathematical formalization of the research problem, nor do they survey the

information-theoretic foundations of the tradeoffs between resource usage and correctness like we

do in this article (Section 4 and Section 10, respectively).

This survey is the result of research ideas and discussions started at a multi-disciplinary workshop,

involving the authors, held in April 2017. We wrote the survey shortly thereafter and submitted

it for review in June 2018. As a result, our coverage of the research literature is skewed towards

articles published prior to 2018. We have made every attempt to update the survey with relevant

recent results at the time of acceptance for publication.

Any survey of an active research field can necessarily never be exhaustive. We do not explicitly

cover the long history of fundamental research results on changing the structure of algorithms to

trade, e.g., average case performance for deterministic execution (approximation and randomized

algorithms). Instead, we limit ourselves to results that apply to compile-time program transforma-

tions of applications which implement a fixed algorithm. Throughout the survey, our objective is to

highlight representative examples that provide reusable insights, rather than compile an exhaustive

list of all related publications and related domains.

1.2 Contributions and outline
This survey presents:

• A cross-disciplinary overview of research results on correctness versus resource usage

tradeoffs, spanning the hardware abstractions and disciplines of: transistors, circuits, microar-

chitecture and architecture, programming languages, operating systems, and applications.

• An overview of existing uses of quality-versus- resource-usage tradeoffs across appli-
cation domains and examples of two end-to-end applications (Section 2 and Section 3).

• Mathematical formalization and terminology for describing resource usage versus cor-

rectness tradeoffs of computing systems that interact with the physical world. The formaliza-

tion is consistent with existing widely-used terminology and at the same time provides a

coherent way to discuss tradeoffs across domains of expertise (Section 4).

• Detailed discussions of the state of the art across the layers of system implementation

stack, from circuits, to microarchitecture and architecture, to the programming language and

operating system layers of abstraction (Section 5 – Section 8).

• A taxonomy tying together the ideas introduced in the survey (Section 9).

• A discussion of limits of computation in the presence of noise. (Section 10).

• A set of open challenges across the layers of abstraction (Section 11).

2 EXISTING QUALITY VERSUS RESOURCE USAGE TRADEOFFS
The idea of trading quality for resources and efficiency is inherent to all computing domains.

Several research communities have developed techniques to exploit tolerance of applications to

noise, errors, and approximations to improve the reliability or efficiency of software and hardware

systems. In the same way that there have always been attempts to make hardware and software
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more tolerant to faults independent of specific research on fault-tolerant computing, there has

also always been a pervasive use of techniques for approximation (e.g., Taylor series expansions)

independent of recent interest in approximate computing. The following highlights some of these

efforts across application domains.

2.1 Scientific computing
Scientific computing can be defined as “the collection of tools, techniques, and theories required to

solve on a computer mathematical models of problems in science and engineering” [71]. Most of

these models are real-valued, and exact analytical solutions rarely exist or are costly to compute [44,

134]. As a result, numerical approximations and their associated quality-efficiency tradeoffs have

always been important in scientific computing [55].

These numerical approximations are introduced at different levels of abstraction. Because the

real-world is too complex to be represented exactly, practical considerations require resorting to

models, incurring modeling errors [134]. Even with a model in hand, analytical solutions may not

exist and numerical solutions are needed to approximate the exact answers [26, 47], introducing

further deviations from the expected result. And finally, most models are real-valued and thus have

to be approximated by finite-precision arithmetic, adding roundoff errors [85].

Roundoff errors can be bounded to some extent automatically using techniques such as interval

arithmetic [104]. Dealing with most of the errors introduced by modeling, numerical approximation,

and finite-precision arithmetic, is rarely automated by software tools. The state of the art in dealing

with modeling and numerical errors often requires manual intervention of the programmer or

domain expert and is typically on a per-application basis. Because of the resulting complexity of

the error analysis, the resulting error bounds are often only asymptotic.

2.2 Embedded, digital signal processing, and multimedia systems
Many computing systems that interact with the physical world or which process data gathered from

it, have high computational demands under tightly-constrained resources. These systems, which

include many embedded and multi-media systems, must often process noisy inputs and must trade

fidelity of their outputs for lower resource usage. Because they are designed to process data from

noisy inputs, such as from sensors that convert from an analog signal into a digital representation,

these applications are often designed to be resilient to errors or noise in their inputs [213].

Several pioneering research efforts investigated trading precision and accuracy for signal process-

ing performance [7] and exploiting the tolerance of signal processing algorithms to noise [83, 192].

When the outputs of such systems are destined for human consumption (e.g., audio and video), com-

mon use cases can often tolerate some amount of noise in their I/O interfaces [207–209, 212, 214].

2.3 Computer vision, augmented reality, and virtual reality
Many applications in computer vision, augmented reality, and virtual reality are compute-intensive.

As a result, many of their algorithms (e.g., stereo matching algorithms) have always been imple-

mented with quality versus efficiency tradeoffs in mind [72, 187, 222]. The implementations of these

algorithms have used techniques including fixed-point implementations of expensive floating-point

numerics [135] and algorithmic approximations such as removing time-consuming backtracking

steps [24] when implementing these algorithms on FPGA accelerators.

2.4 Communications and storage systems
The techniques we survey often involve computation on noisy inputs or data processing in the

presence of noise in much the same way research in communication systems and information theory

considers communication over a noisy channel. As one recent example of work that could be viewed

as either traditional information theory and communication systems research or approximate
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computing, Huang et al. [90] present a simple yet effective coding scheme that uses a combination

of a lossy source/channel coding to protect against hardware errors for iterative statistical inference.

2.5 Big data and database management systems
Approximate query processing in the context of databases and big data research leverages sampling-

based techniques to trade correctness of results for faster query processing. Early work in this

direction investigated sampling from databases [153, 154]. More recently, BlinkDB [2], an ap-

proximate query engine, allows users to trade accuracy for response time. BlinkDB uses static

optimizations to stratify data in a way that permits dynamic sampling techniques at runtime to

present results annotated with meaningful error bars. Other recent efforts include Quickr [101]

and ApproxHadoop [69].

2.6 Machine learning
Machine learning techniques learn functions (or programs) from data and this data is in practice

either limited or noisy. Larger datasets typically lead to more accurate trained machine learning

models, but in practice training datasets must be limited due to constraints on training time. As

a result, many machine learning methods must inherently grapple with the tradeoffs between

efficiency and correctness of the systems.

There are several techniques that allow machine learning systems to trade accuracy for effi-

ciency. These techniques include random dropout [203], which randomly removes connections

within a neural network to prevent overfitting during training and to improve overall training

accuracy. Techniques such as weight de-duplication and pruning [37, 79], low-intensity convolution

operators [89, 92], network distillation [174], and algorithmic approximations based on matrix

decomposition [50, 110] take advantage of redundancy to minimize the parameter footprint of a

given neural network. Weight quantization is yet another technique to reduce computation and

data movement costs in hardware [45, 97].

2.7 Approximation and Randomized Algorithms
Approximation has been studied extensively in algorithmics and theoretical computer science.

Approximation algorithms seek efficient solutions to computationally hard problems (e.g., knapsnack

or SAT solving), such that the distance of the approximate solution is guaranteed to be within a

fixed bound from the exact solution [228, 234]. These algorithms often use heuristic search methods

(e.g., greedy search), or relax hard optimization problems to instances of linear programs. Often,

they are fully polynomial-time approximation schemes—polynomial-time algorithms that for each

fixed error bound ε have their running time bounded by a polynomial in the size of
1

ε and the size

of the problem.

Randomized algorithms use a sequence of random bits to achieve good average case performance
over the input space. These algorithms often ensure that the computed solution is within a small

distance from the exact solution with high probability [146]. Especially interesting is the class of

randomized algorithms that perform property testing, i.e., fast randomized algorithms for decision-

making [70]. Examples include testing for similarity of strings or almost-sortedness of a sequence’s

elements. These algorithms typically query only a small fraction of the data set (often logarithmic

in size), and make the correct decisions with high probability.

These approximations are purely algorithmic in nature. They often come with strong theoretical

guarantees, but do not take advantage of approximation opportunities in the system stack. Each

of these topics have been extensively covered by existing monographs, e.g., [70, 146, 228, 234], to

which we refer the interested readers.
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Fig. 1. The block diagram of one canonical pedometer application implementation.

3 ILLUSTRATIVE END-TO-END EXAMPLES
Many applications from the domains of signal processing and machine learning have traditionally

had to grapple with tradeoffs between precision, accuracy, application output fidelity, performance,

and energy efficiency (see, e.g., Section 2.2 and Section 2.6). Many of the techniques applied in these

domains have been reimagined in recent years, with a greater willingness of system designers to

explicitly trade reduced quality for improved efficiency.

We discuss two applications from the signal processing and machine learning domains: a pe-

dometer and digit recognition. Using these examples, we suggest ways in which resource usage

versus correctness tradeoffs can be applied across the layers of the hardware stack, from sensors,

over I/O, and to computation. We use these applications to demonstrate how end-to-end resource

usage could potentially be improved even more when tradeoffs are exploited at more than one

layer of the system stack.

3.1 Example: a pedometer application
Applications which process data measured from the physical world must often contend with noisy

inputs. Signals such as temperature, motion, etc., which are analyzed by such sensor-driven systems,

are usually the result of multiple interacting phenomena which measurement equipment or sensors

can rarely isolate. At the same time, the results of these sensor signal processing applications may

not have a rigid reference for correctness. This combination of input noise and output flexibility

leads to many sensor signal processing applications having tradeoffs between correctness and

resource usage.

One concrete example of such an application is a pedometer (step counter). Modern pedometers

typically use data from 3-axis accelerometers to determine the number of steps taken during a given

period of time. Even when a pedometer’s wearer is nominally motionless, these accelerometers will

detect some distribution of (noisy) measured acceleration values. At the same time, small errors in

the step count reported by a pedometer are often inconsequential and therefore acceptable.

Figure 1 shows a block diagram for an implementation of one popular approach [242]. Our

implementation takes as input 3-axis accelerometer data and returns a step count for time windows

of 500ms. The pedometer algorithm first selects the accelerometer axis with the maximum peak-

to-peak variation (the maximum activity axis selection block in Figure 1). The algorithm uses the

selections to create a new composite sequence of accelerometer samples. Next, the pedometer

algorithm performs low-pass filtering, and then, for each 500ms window, computes the maximum

and minimum acceleration values and the midpoint of this range (the extremal value marking block

in Figure 1). Finally, the algorithm counts how many times the low-pass filtered signal crosses the

per-window midpoints in one direction (e.g., from above the midpoint to below it), and it reports

this count as the number of steps.

Figures 2a–2c show the progression of a sequence of accelerometer samples through the stages

of the pedometer algorithm, which outputs a step count of 19 at the end. Figures 2d–2f show a

modified version of the data where we have replaced 5% of the samples with zeros to simulate

intermittent failures at a sensor. Even though the data in the final stage of the algorithm (Figures
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Fig. 2. Intermediate stages of data from a pedometer application.

2c and 2f) looks qualitatively different, the final output of the algorithm is relatively close the

noise-free output.

Applying individual tradeoffs. The hardware and system stack for a typical pedometer comprises

sensors (e.g., accelerometers), I/O links (e.g., SPI or I2C) between those sensors and a processor, a

runtime or embedded operating system, the implementation of the pedometer algorithm, and a

display. A system’s designer may exploit the resource versus correctness tradeoffs at each of these

layers or components independently, using the techniques surveyed in Sections 5-8 of this article.

For example, a system designer could apply Lax [213] to sensors, VDBS encoding [208, 209, 214] to

the I2C or SPI communication between sensors and a microcontroller, and could ensure that the

potentially inexact data does not affect the overall safety of the application using EnerJ [180] or

FlexJava [158].

Potential for end-to-end optimization. This survey argues for exploring the end-to-end com-

bination of techniques for trading correctness for efficiency, across the levels of abstraction of

computing systems. Rather than treating each layer of the hardware and system software stack

as an independent opportunity, this article argues that greater resource-correctness tradeoffs are

possible when the entire system stack is considered end-to-end. For example, the insensitivity of

the pedometer algorithm to input noise highlighted in Figure 2 might be determined by program

analyses. These analyses could in turn be used to inform instruction selection for generated code

as well as determining sensor operating settings (e.g., sampling rate, operating voltage, on-sensor

averaging) and sensor I/O settings (e.g., choices for the I/O encoding for the sensor samples as they

are transferred from a sensor).

3.2 Example: digit recognition
Digit recognition is the computational task of determining the correct cardinal number correspond-

ing to an image of a single handwritten digit. Digit recognition is to computer vision scientists what

fruit flies are to biologists: a quick and easy way to evaluate the feasibility of a novel idea. One can

envision a simple system that analyses handwritten digits directly from a camera source. An image
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Fig. 3. The multi-layer perceptron (MLP) trained on the MNIST dataset: topology and effects of quantization.

is captured by a CCD or CMOS sensor. Each pixel of the image is converted from an analog reading

to a quantized value in the digital domain. That raw digital image is now sent for processing to

a processor or dedicated ASIC to produce a cardinal number that preferably matches the ground

truth handwritten digit. Such system could be used to label postal codes in an automated mail

sorting facility. The inherent analog nature of the processing system’s camera sensor, combined

with the imperfect shapes of the human-written numerals, make digit recognition a fundamentally

noisy and error-prone process.

One popular technique used to classify digits is the use of neural networks [116]. Neural net-

works are trained with a correctly labeled training data set, which is used to iteratively improve

classification accuracy via the back propagation algorithm. Neural networks—and more broadly

machine learning—are well suited for object recognition problems due to the fact that it would

be very difficult to write a program describing how to classify an image based on highly diverse

ground-truth examples. Instead, neural networks learn from training examples as a human would

do, and derive internally a set of features that can help discriminate between the different classes

of objects.

Neural networks are naturally imperfect discriminators: the quality of the classification relies

upon how diverse the training set is, and how resilient the classifier is to noise and input modifica-

tions (e.g. rotations, lateral shifts, etc.). In addition, if the classifier is trained for too long over a

dataset that is too limited, it can end up overfitting the training set. Errors that occur as bit-flips

internally can be learned around during training in order to gracefully recover from hardware

errors [53]. Aggressive quantization techniques such as network binarization [46, 168] can work

well in certain domain problems. Randomized pruning techniques can also provision against over-

fitting, and help improve the trained classifier’s robustness [117]. Consequently, neural networks

constitute an ideal target for approximation techniques across the stack.

Figure 3(a) shows a simple network architecture for performing handwritten digit recognition.

The network consists of three fully-connected layers (labeled “fc” in the Figure). The input layer

takes in a 28×28 image, which is flattened into a one-dimensional array of 784 pixel values. Each

fully connected layer performs a weighted sum of all input values to produce a single output value

that is applied a bias, followed by a non-linear activation function. The latter determines if the

output neuron should be considered active or not. The layers before the final output layer are

known as hidden layers: they identify hidden features that help discriminate between different

classes of digits. The final layer has 10 outputs, each corresponding to a different class of digits.

The neuron with the highest value determines what digit the neural network has classified the

input image as.
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00

01

10

11

Value

0

1

-2

-1

b0 stuck at 0 b0 stuck at 1 b1 stuck at 0 b1 stuck at 1

0 (!=0) 1 (!=1) 0 (!=0) -2 (!=2)

0 (!=1) 1 (!=0) 1 (!=0) -1 (!=2)

-2 (!=0) -1 (!=1) 0 (!=2) -2 (!=0)

-2 (!=1) -1 (!=0) 1 (!=2) -1 (!=0)

Default 2’s Complement Encoding

Bits Value

1

0

0

-1

b0 stuck at 0 b0 stuck at 1 b1 stuck at 0 b1 stuck at 1

1 (!=0) 0 (!=1) 1 (!=0) 0 (!=1)

1 (!=1) 0 (!=0) 0 (!=0) -1 (!=1)

0 (!=0) -1 (!=1) 1 (!=1) 0 (!=0)

0 (!=1) -1 (!=0) 0 (!=1) -1 (!=0)

Error-Aware Ternary Encoding

Fig. 4. Application-aware codes can be critical in enabling robustness to errors in neural networks. In the
case of ternary neural networks, we can craft codes that ensure a deviation of at most 1 from the original
value when a single bit flip error occurs.

Applying individual tradeoffs. Figure 3 (b) shows the results for accuracy of the neural network

with quantization of weights starting with a 32-bit floating point baseline all the way down to a

1-bit weight. The network is trained on the MNIST data set with quantization of weights either

during or after training. The results show that as long as re-training is applied, this neural network

is extremely tolerant even to aggressive levels of quantization. Quantization additionally enables

weight prunability and compressibility: weights represented with fewer bits lead to fewer distinct

values, and more weights end up in the zero-valued bin. This creates opportunities for sparse matrix

compression [78], which can be directly implemented in hardware.

Potential for end-to-end optimization. Once the network has been quantized and compressed, we

can further leverage resource versus correctness tradeoffs by storing the weights in approximate

voltage-overscaled SRAM cells [169], which occasionally produce read errors. Recent work [108]

motivate the use of approximate SRAMs by highlighting that they consume a significant percentage

of overall power in accelerator. The authors show that both re-training and fault detection mecha-

nisms can mitigate the destructive effects of voltage-overscaled SRAM read upsets on classification

tasks.

In addition, in the case where weights are quantized to −1, 0 and 1, choosing the right encoding

shown in Figure 4 can ensure that the effects of a single bit-flip due to an erroneous read remains

limited. With this encoding, single bit-flip errors would cause in the worst case a deviation of 1 from

the original weight value, as opposed to a value polarity flip from −1 to 1 or vice-versa. The latter

is allowed under the default 2’s complement encoding, and could potentially lead to catastrophic

classification degradation.

To conclude, a synergistic combination of (1) training-corrected quantization and pruning, (2)

hardware optimization of SRAMs to minimize power via voltage overscaling, and (3) selecting

a weight encoding that minimizes catastrophic bit-flips altogether enables a more efficient digit

classification system that can embrace the noisy nature of the image capturing system and the

variable nature of handwritten digits.

4 TERMINOLOGY
The terminology used to describe resource usage versus correctness tradeoffs has historically

differed across research communities (e.g., the computer-aided design and design/test communities

versus the programming language and system software communities). The differences in terminol-

ogy are sometimes inevitable: a “fault” in hardware is usually a stuck-at logic- or device-level fault

while a “fault” in an operating system is usually the failure of a larger macro-scale component. In

this article, we attempt to provide a uniform scaffolding for terminology. In doing so, we acknowl-

edge that this terminology will by necessity need to be reinterpreted when applied to the different

layers of abstraction in a computing system and we do precisely that at the beginning of each of

the following sections.
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4.1 Computation in the physical world
We consider computing systems that make observations of the physical world (e.g., using sensors

or other data input sources) and compute a discrete set of actions that the system (or a human)

then applies back to the physical world. Such end-to-end systems are therefore analog in, analog
out. In this process, the computing system measures the physical world, computes on a sample of its

measurement, and then computes a set of actions or actuations to be applied to the world. Figure 5

shows the steps of computation in the physical world.

We denote the domain of quantized values by Q. In practice, quantized values are often bounded

integers or finite-precision floating-point numbers. When working with a relation r ⊆ A × B, the
domain and range of a relation r are defined as Domain(r ) := {x | ∃y.(x ,y) ∈ r } and Range(r ) :=
{y | ∃x .(x ,y) ∈ r }. The composition of two relations f and д, denoted f ◦д, is allowed if Range( f ) ⊆
Domain(д) and it is defined as f ◦ д = {(x , z) | ∃y.(x ,y) ∈ f ∧ (y, z) ∈ д}. A left-total relation is a

relation that covers all members of its input domain. In other words, an output exists for every

possible input.

Physical world: We assume that all of our systems are situated in the physical world and

we model inputs from this world with real numbers, R. This assumption is consistent with most

applications that trade errors for efficiency (see Section 2 and Section 3), such as sensing applications

(as in Section 3.1), cyber-physical systems, computer graphics, computer vision, machine learning

(as in Section 3.2), and scientific computing.

Measurement and analog processing step: Each computation situated in the physical world

begins with a measurement in which the computing system makes an observation of the physical

world. In metrology, this quantity is referred to as the measurand. We denote the result of a

measurement by a probability distribution. We restrict our focus to distributions that we can

represent with a probability density function (PDF), f : R→ R.
Measurements may include within their internal processes computations that transform the

measured distributions to yield new distributions. These internal processes may be nondeterministic.

We include this facility to account for systems that may perform computation directly in the

unsampled and unquantized analog domain and Section 5.3 of the survey gives examples of such

systems. A measurement is therefore a function of type f : R→ (R→ R), mapping a real value

(the measurand) to a function in the form of the probability distribution (the measurement). The

result of the measurement step of a computation is therefore still in the domain of continuous-time

real-valued quantities.

Sampling and quantization step: Between the measurement step and a subsequent discrete

(digital) computation step, we assume that there is a sampling and quantization step that generates

discrete-time samples with discrete values from the real-valued distribution resulting from the

measurement step. A sampler is therefore a relation f : (R→ R) × Qm that samples and quantizes

a discrete value from a probability distribution. (Qm denotes the set of allowable quantized values.)

The process of quantization adds an implicit noise, known as the quantization noise to the real-valued
input.

Digital computation step: In the discrete world, we consider the computations that take as

input a discrete sample from the measured world and performs a potentially nondeterministic

computation to produce a discrete output. Therefore, a discrete computation f is a left-total relation

f ⊆ Qm × Qo where Qm is the input and Qo is the output.
Actuation step: The digital outputs can be used back in the physical world as inputs to real-

valued actuation which modifies the state of the physical world. An actuation computation is

therefore a nondeterministic function that we model as a left-total relation f ⊆ Qo × R.
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Analog input from 
the physical world

Sensor

Measurement 
noise

Sample and 
quantize

f
g h

Computation

Fault

Analog output to 
the physical world

Implicit 
quantization 

noise

Fig. 5. Steps of computation in the physical world.

4.2 Computation and correctness
Following the terminology defined in Section 4.1, we can express any computation that processes

data from the physical world as a composition of the steps of measurement, sampling and quantiza-

tion, digital computation, and actuation. Each of these steps defines a computation:
Computation: A computation f is a nondeterministic function that we denote as a left-total

relation f ⊆ I ×Q where we instantiate the domain I and O to fit the computation’s corresponding

step from Section 4.1. For example, as we will see later in Section 5.1, at the circuit level, the input

domain I and the output domain O are voltage levels.

We model computations as left-total relations to account for nondeterminism where for the same

input, the computation may produce different outputs on different executions. The relations are

left-total in that there exists at least one output for every value in the input domain. This modeling

assumptions also dictates that computations terminate. If a computation is deterministic, then we

model it as a function f : I→ O.
Specification: For any computation f ⊆ I × O, a system’s developers and users can provide

its specification as a relation f ∗ ⊆ I × O that defines the set of acceptable mappings between

the function’s inputs and outputs. A specification need not be executable itself and multiple

implementations can satisfy the same specification.

Correctness: A computation and its corresponding definition as a relation is correct if it
implements its specification. A computation f implements a specification f ∗ iff ∀i,o. (i,o) ∈ f ⇒
(i,o) ∈ f ∗. This definition means that every output of f for a given input, must be valid according

to the specification.

Faults: To define faults, we first decompose a computation f into two computations д ⊆ I×M
and h ⊆ M × O, where M is a domain of values for the output of д and h ◦ д ≡ f . Given this

decomposition, a fault is an anomaly in the execution of д on an input i such that д produces an

anomalous, unexpected valuem in that (i,m) < д.
Errors: An error occurs when a computation encounters a fault and the computation’s resulting

output does not satisfy its specification. Given a computation f and its decomposition into д and h
as above, the semantics of an error is that if the execution of д on i produces a faulty valuem (as

above), then that fault is an error if the result of the continued execution via h does not satisfy f ’s
specification—namely, that (i,h(m)) < f ∗.

Masking: A fault does not always result in an error; a fault can instead be masked. If a
computation encounters a fault and the computation’s resulting output satisfies its specification,

then the fault has been masked by the computation’s natural behavior. Given a computation f and

its decomposition into д and h as before, the semantics of a masked error is that if the execution of

д on i produces a faulty valuem (as above), then that fault is masked if the result of the continued

execution via h satisfies f ’s specification—namely, that (i,h(m)) ∈ f ∗.
Precision and accuracy: We define precision as the degree of discretization of the state space

determined by Qm (from the sampling and quantization step, Section 4.1) and we define accuracy
as a distance between the functions f and f ∗ defined above.
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4.3 Standard viewpoints
Let h be the identity function and f = д. Then the aforementioned definitions give a semantics to

faults that affect the output of a single, monolithic function f . Take f ∗ to be f , then the function’s

specification is given by its exact behavior. This form of specification is the standard assumption

for computing systems wherein they must preserve the exact semantics (up to nondeterminism) of

the computation. Most existing approaches to trading errors for efficiency fit this viewpoint: they

typically start from an existing program as their specification and approximate it to allow for more

efficient implementations.

4.4 Quantifying errors
Approaches to quantifying errors include absolute errors, relative errors, and error distributions. In

most contexts, the evaluator of a system is interested in the error of not only a single input, but

a whole domain of inputs. Depending on the application domain, upper or lower bounds on the

worst-case error, or average errors may be of interest. When a computation runs repeatedly, the

error frequency or error rate captures how often a computation returns an incorrect result.

5 TRANSISTOR-, GATE-, AND CIRCUIT-LEVEL TECHNIQUES
Transistors provide the hardware foundations for all computer systems. As a result, their physical

properties determine the efficiency at which a particular computation can be performed. When

collections of transistors are used to form gates and analog circuits, and when collections of gates

are used to implement digital logic circuits, the organization of the transistors, gates, and circuits

can be designed to trade efficiency for correctness.

5.1 Notation
Following the notation introduced in Section 4, input I can be defined as a voltage level that is

switched to O as a computation f is executed. Therefore, f : I→ O is a switching of voltage at a

transistor or a group of transistors forming a circuit element, for instance, a byte in a memory or

an adder in an arithmetic/logic unit (ALU). Such computation can be regarded as f ∗ : I→ O where

the relation between f ∗ and f is the difference in the electrical operating points of the individual

transistors. This difference saves computational costs like power consumption and latency while

introducing timing errors and incorrect voltage levels.

5.2 Analog input / analog output systems: a comparison reference for quantization
When using finite-precision arithmetic, computation always involves errors that are caused by

quantization. Quantization is a fundamental mechanism for trading energy for accuracy and recent

work has highlighted examples of its effectiveness [148].

The effect of quantization errors can be observed by treating the inputs and outputs of a computing

system as real-valued analog signals and comparing these signals to an ideal (error-free) computing

system that accepts analog inputs and produces analog outputs. When such ideal outputs are not

available, designers often use the output of the highest precision available (e.g., double-precision

floating point) as the reference from which to determine the error of a reduced-precision block.

Such analyses are common in the design process of digital signal processing algorithms such as

filters [159] where the choice of number representation and quantization level enables a tradeoff

between the performance and signal-to-noise ratio properties of a system.

5.3 Analog computing: data processing with currents and voltages
Analog computing systems [103, 130] eliminate the need for discretization and the resulting

restriction on precision that is inherent in digital circuits. While, in theory, analog circuits provide

unbounded precision, in practice their precision is limited by factors such as noise, non-linearities,

the degree of control of properties of circuit elements such as resistors and capacitors, and the

degree of control of implicit parameters such as temperature. At higher precision, analog blocks tend
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to be less energy-efficient than digital blocks of equivalent precision [186]. Because they usually do

not use minimum-size transistors, analog circuits may also be larger in area than their digital circuit

equivalents. Designing analog computation units is also a challenging task. Nevertheless, analog

circuits can be an attractive solution for applications that tolerate low-precision computation [186].

5.4 Probabilistic computing: exploiting device-level noise for efficiency
A line of research pioneered by Palem et al. [35, 156] (“probabilistic computing”) proposes harnessing

intrinsic thermal noise of CMOS circuits to improve the performance of probabilistic algorithms

that exploit a source of entropy for their execution. Chakrapani et al. [31] show an improvement in

the energy-performance product for algorithms such as Bayesian inference, probabilistic cellular

automata, and random neural networks using this approach and they establish a tradeoff between

the energy consumption and the probability of correctness of a circuit’s behavior. These techniques

have also shown energy savings for digital signal processing algorithms that do not employ

probabilistic algorithms but which can tolerate some amount of noise [67, 107].

5.5 Stochastic computing: unary representation and computing on probabilities
Stochastic computing (SC) uses a data representation of bit streams that denote real-valued proba-

bilities [6]. In theory, the probabilities can have unbounded precision, but in practice, the length of

the bit-streams determines precision [4]. SC was first introduced in the 1960s [65] and its main

benefit is that it allows arithmetic operations to be implemented via simple logic gates: a single and

gate performs SC multiplication. This made SC attractive in the era of expensive transistors. But as

transistors became cheaper, SC’s benefit faded away, and its main drawbacks, i.e., limited speed

and precision, became dominant [4]. For this reason, SC was only used in certain applications, such

as neural networks [51, 111] and control systems [223].

SC has seen renewed interest over the last decade [4], mainly because of its energy efficiency.

SC’s probabilistic nature copes with new inherently random technologies such as memristors [112].

Furthermore, the unary encoding of numbers on SC makes the computation robust against er-

rors [160], and allows variable precision computation [5]. With the low precision requirement of

modern machine learning applications, SC is becoming an attractive alternative to conventional

binary-encoded computation [119].

Despite what the name suggests, most existing SC circuits are in fact deterministic. Unless a true

random number source (e.g., memristors) is used, SC circuits will produce the same output if inputs

are unchanged. Although pseudo-random number generators with long periods can imitate a true

random number source, in reality they are still deterministic. Furthermore, several studies have

shown that adding determinism to SC is in fact useful [75, 151]. If carefully chosen, deterministic

number sources can increase the accuracy of SC circuits without adding any extra overhead.

5.6 Voltage overscaling: improved efficiency from reduced noise margins
The term voltage overscaling is often used to refer to reducing supply voltages more than is typically

deemed safe for a given clock frequency. Voltage overscaling exploits the quadratic relationship

between supply voltages and dynamic power dissipation. Let Vdd be the supply voltage of a CMOS

circuit (e.g., an inverter), let f be its clock frequency (reciprocal of its delay) and let C be the

effective capacitance of the load of the circuit. Then, the dynamic power dissipation P is [162]

P ∝ CV 2

dd
f . (1)

The delay of a gate in a circuit, and hence the clock frequency f , is however not independent
of supply voltage Vdd. Let Vt be the device threshold voltage and let α be a process-dependent

parameter (the velocity saturation exponent [176]). Then, as supply voltageVdd decreases, the delay
of charging its load capacitance for a gate increases and the maximum clock frequency achievable
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at a given voltage follows the relation

f ∝
(Vdd −Vt )

α

Vdd
. (2)

As a result, overscaled voltages cause circuit delays, which in turn lead to timing errors in circuits

at a fixed clock speed. Several approaches have explored the idea of carefully and systematically

accepting such errors in exchange for the large (quadratic) power savings that voltage overscaling

can potentially provide [84, 100, 102, 114, 196]. In unmodified circuits, this often leads to catastrophic

errors at close-to-nominal voltages, as many digital circuits are optimized to minimize timing slack.

However, for several application domains, such as image and video processing, inherent dependence

of errors on known input characteristics can be exploited to redesign circuits such that they allow

for significant overscaling with small and graceful degradation of output quality [13, 81, 147,

225]. However, voltage overscaling has potential issues with timing closure and meta-stability.

Furthermore, timing errors in the critical paths of a circuit due to voltage overscaling tend to affect

the most significant bits of a computation first and hence can lead to large errors. Dedicated logic

modifications targeting lower significant bits as described next can instead provide better accuracy

with additional switching activity savings for the same timing and hence voltage reduction [137].

5.7 Pruned circuits for efficiency at the expense of precision and accuracy
Pruning circuits refers to deleting or simplifying parts of a circuit based on the probability of their

usage or importance to output quality. Recent research has shown how circuit pruning improves

latency, energy, and area without the overheads associated with voltage scaling [122, 136, 189, 197].

Pruning can be applied to digital circuit building blocks such as adders and multipliers, enabling

quality-cost tradeoff opportunities through different logic simplification and pruning techniques.

Approximate adders attempt to simplify carry chains [232, 243] or to use approximate 1-bit full

adders [76, 131, 137] at lower significant digits of a sum computation. Accuracy-configurable adders

have also been proposed for adaptive-accuracy systems that require a functional unit like an adder

or multiplier to vary the degree of tradeoff between correctness and resource usage based on the

quality demand of computation [99]. Unlike approximate adders, approximate multipliers have a

higher design space exploration requirement, as they are composed of 2×2 partial products that

are summed up by deploying an adder tree to compute the final result [113]. Correctness versus

resource usage tradeoffs can be deployed in multipliers (partial products) or adders, or both, for a

chosen number of least-significant bits [95, 170].

Approximate adders and multipliers provide the combinational building blocks for approximate

datapath and processor designs. At the sequential logic level, the challenge is in determining

the amount of approximation to apply to each addition or multiplication operation in a larger

computation in order to minimize output quality loss while maximizing energy savings. For

example, in a larger computation that consists of multiple accumulations, using an adder with a

zero-centered error distribution [137] will result in positive and negative errors canceling each other

and thus averaging in the final output of a larger accumulation. Similarly, approximate multipliers

with unbiased error distribution are promising for accumulation-based algorithms like multiply-

accumulate (MAC) [80]. By contrast, in other computations, an approximate combinational block

that always over- or under-estimates may be beneficial.

Determining the best tradeoff for each functional unit in a larger sequential design has been

investigated for fixed register transfer level (RTL) designs [152, 166, 231]. Pure RTL optimizations,

on the other hand, do not exploit changes in approximated component characteristics for a complete

RTL re-design. In the context of custom hardware/accelerator designs, selection of optimal approxi-

mated operator implementations can instead be folded into existing C-to-RTL high-level synthesis

(HLS) tools [118, 120]. For programmable processors, accuracy configuration of the datapath can
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be exposed through the instruction-set architecture (ISA) [229]. A compiler then has to determine

the precision of each operation in a given application (see Section 6 and Section 7).

5.8 Approximate memory: reducing noise margins for efficiency in storage
Memory costs are often higher than that of computations in many data-intensive applications [15].

Approximate memories have been investigated in the research literature, to trade quality for

energy, latency, and lifetime benefits [181, 198]. Reducing the refresh rate of DRAM provides an

opportunity to improve energy efficiency while causing a tolerable loss of quality [98, 165]. For

static random access memory (SRAM), by contrast, the tradeoff between correctness and resource

usage is typically achieved by voltage overscaling, where the main concern is in dealing with the

failures in the standard 6-Transistor (6T) cells of an SRAM array under reduced static noise margins

(SNMs) [66]. As a result, hybrid implementations combining 6T with 8T SRAM cells [32] or with

standard cell memory (SCMEM) [19] have been employed to achieve aggressive voltage scaling in

order to get better quality versus cost tradeoffs. In case of emerging non-volatile random-access

memory (NVRAM) technologies, such as spintronic memories (e.g., STT-MRAM), reducing the read

current magnitude can reduce energy of read operations at the expense of reduced noise margins

and hence accuracy of the content being read [167]. Similarly, significantly increasing the read

current magnitude reduces the read pulse duration, decreasing the read latency while potentially

disturbing the written content with noise.

5.9 Summary
The circuit-level techniques surveyed in this section must ultimately be deployed in the context of

concrete applications. For example, one case study found that for applications such as Fast Fourier

Transforms (FFTs), motion compensation filters, and k-means clustering, applying traditional

fixed-point optimizations to limit the size of operands was more effective than applying circuit-

level approximations such as approximate adders and multiplier circuits [14]. This is because

approximating some bit values still requires information about those bits to be stored and used in

downstream computations. The additional overhead of this bookkeeping in many cases is not worth

the quality benefits. Carefully selecting the most suitable approximation strategies and comparing

their cost versus quality tradeoffs can therefore lead to a better solution for certain applications.

6 ARCHITECTURE AND MICROARCHITECTURE-LEVEL TECHNIQUES
Architectural and microarchitectural techniques that trade correctness for resource usage have

focused primarily on correctness at the software or application level and have focused on reducing

resource usage in memory, in the processor, and in on- or off-chip I/O.

6.1 Notation
Architectural techniques create abstractions that allow operating systems, programming languages,

and applications to specify their precision and accuracy requirements through specialized instruc-

tions and instruction extensions. Following the notation introduced in Section 4, the computation

function f : Qm → Qo is defined over the quantized sets Qm and Qo embodied by software-visible

machine state such as registers, memory, and storage. The computation function f is implemented

using either general-purpose cores or specialized hardware accelerators. Microarchitectural tech-

niques facilitate the efficient implementation of the computation function f at the level of hardware

functional units, such as memory controllers and processor pipelines, or by the efficient hardware

representation of the sets Qm and Qo .

6.2 Trading resource usage for correctness in processor cores
Early work trading resource usage for correctness such as Razor and related techniques [57,

202], relied on voltage overscaling as the primary underlying circuit-level mechanism to increase

energy efficiency. As a result, these techniques provided no direct means to improve performance,
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but provided higher energy efficiency at the expense of nondeterministic faults. To mask such

faults and hide them from applications, voltage overscaling approaches typically rely on error

recovery mechanisms. The key insight is that sophisticated error recovery mechanisms can be much

more resource-efficient in ensuring correctness compared to voltage over-provisioning. Carefully

balancing the error recovery overhead against the benefits of voltage overscaling can provide

higher energy efficiency without sacrificing output quality or program safety [57, 202].

Truffle [58] was the first architecture to willingly introduce uncorrected nondeterministic errors

in processor design for the sake of energy efficiency. Truffle uses voltage overscaling selectively to

implement approximate operations and approximate storage. The Truffle architecture provides ISA

extensions to allow the compiler to specify approximate code and data and its microarchitecture

provides the implementation of approximate operations and storage through dual-voltage operation.

For error-free operations, a high voltage is used, while a low voltage can be used for approximate

operations. Voltage selection is determined by the instructions, with the control-flow and address

generation logic always operating at a high voltage to ensure safety.

In addition to improving energy efficiency, architectures that enable tradeoffs between resource

usage and correctness may result in higher performance compared to an error-free baseline [59,

150, 204, 238]. Examples of approaches include offloading parts of a processor’s workload to

computing units that can perform the desired functionality much faster at the cost of deviation

from correct behavior. Because of their performance advantage, such computing units are often

called accelerators. Accelerators that trade resource usage for correctness include, most notably,

neural accelerators [59, 150, 204, 238], which implement a hardware neural network trained to

mimic the output of a desired region of code.

Temam et al. empirically show that the conceptual error tolerance of neural networks translates

into the defect tolerance of hardware neural networks [220], paving the way for their introduction

in heterogeneous processors as intrinsically error-tolerant and energy-efficient accelerators. St.

Amant et al. demonstrate a complete system and toolchain, from circuits to a compiler, that

features an area- and energy-efficient analog implementation of a neural accelerator that can be

configured to approximate general purpose code [204]. The solution of St. Amant et al. comes

with a compiler workflow that configures the neural network’s topology and weights. A similar

solution was demonstrated with digital neural processing units, tightly coupled to the processor

pipeline [59], delivering low-power approximate results for small regions of general-purpose code.

Neural accelerators have also been developed for GPUs [238], as well as FPGAs [150].

6.3 Approximate memory elements
Memory architectures that trade resource usage for correctness permit the value that is read from

a given memory address to differ from the most recent value that was written. The traditional view

of memory elements assumes that every memory access pair consisting of a write followed by a

subsequent read operation, applied to a input I, results in the same read result for a given write

value. In contrast, approximate memory elements may perform non-identity transformations of

the input I. At the architecture level, the benefits of doing so are exposed and leveraged through

reduced read/write latency, reduced read/write access energy, fewer accesses to memory, increased

read/write bandwidth, increased capacity [74, 94, 181], improved endurance [181], and reduced

leakage power dissipation [125]. These techniques have been applied to memory components

ranging from CPU registers [58], caches [58, 183–185], main memory [125], to flash storage [74, 94,

181].

Underlying memory technologies employ circuit-level mechanisms to trade accuracy for reduc-

tion in latency or access energy (or both) (see Section 5.8). Exposing such mechanisms as tunable

knobs to the architecture allows adaptive selection of different approximation/efficiency operation
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points to better fit varying application requirements. For volatile memory technologies, such as

SRAM and DRAM, voltage scaling and refresh rate scaling can be used to reduce static or dynamic

energy at the expense of faults, observed as bit flips [58]. In the case of DRAM, differentiating

between rows that contain data for which errors can be tolerated versus rows that applications re-

quire to remain correct motivates selective refresh rate reduction approaches [125]. In non-volatile

memories, mechanisms that reduce read or write noise margins for energy gains can be leveraged

at the architectural level through dedicated instructions for imprecise loads and stores [167]. For

multi-level solid-state memories that perform write operations iteratively until the written value is

in the desired range, reducing the number of write iterations significantly reduces the latency and

energy of such approximate writes [181], increasing write bandwidth as a side effect, at the expense

of reduced data retention. Furthermore, mapping data that applications can tolerate to be incorrect

onto blocks that have exhausted their hardware error correction resources can significantly extend

endurance.

Other architectural methods for trading resource usage for correctness in memories include

predicting memory values instead of performing an actual read operation. For example, on the

occurrence of a cache miss, load value approximation (LVA) [185, 221] provides predicted data

values to a processor which may differ from the correct values in main memory. Doing so hides

cache miss latency and thereby reduces the average memory access time at the expense of having

data values in the cache that differ from what they would be had they been faithfully loaded from

main memory. The correct values in main memory may subsequently be read from memory to

train the predictor and improve its accuracy, or the main memory access may be skipped entirely

to save energy. Conventional value prediction considers any execution relying on predicted values

speculative and provides expensive microarchitectural machinery to roll back execution in the

case of a mismatch between the predicted and actual values. LVA, by contrast, allows imperfect

predictions, trading correctness of values in the cache for reduced micro-architectural complexity

and reduced memory latency.

The correctness of values obtained from memories can also be traded for an increase in effective

storage capacity. One way to achieve this is to avoid storing similar data multiple times. For example,

storing similar data in the same cache line can save on cache space in situations when substituting

a data item for a similar one still yields acceptable application quality [183, 184]. Another way to

trade errors for capacity is through deliberate reduction in storage resources dedicated to error-

correction [74, 94]. By providing weaker error-correction schemes for data whose accuracy does

not have a critical impact on the output quality, significant storage savings have been demonstrated

in the case of encoded images and videos [74, 94].

6.4 Approximate communication
As in the case of approximate memory elements, approximate communication systems may perform

non-identity transformation f ∗ of input I to efficiently transfer the input through a communication

channel or network. The idealized computation function f corresponds to an identity transformation

over an infinitely large input. Examples of inputs include signals on intra- and inter-chip wires,

such as memory buses and on-chip networks. The architectural techniques trading resource usage

for correctness in such systems usually rely on more efficient but less reliable links, network buffers,

and other network elements, or employ lossy in-network compression to minimize data movement,

while overlapping the compression and communication.

The conventional approach to trade resource usage for correctness in communication over a

channel is to employ lossy compression at the source and decompression at the destination, with

the goal of reducing the amount of data transferred through the channel, as well as to reduce

latency. Such approaches have been widely used for decades in long-distance communication, such
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as media streaming applications. However, when the communicating parties are two processors on

a board, two cores on a chip, or a core and a cache, the communication latency is in the order of

nanoseconds and any compression/decompression latency added to the critical path of program

execution may be prohibitive.

At the circuit level, transmitting bits over a wire on-chip or over a printed circuit board trace costs

energy. For single-ended I/O interfaces, where the signaling of information is with voltage levels,

the energy cost is typically due to the need to charge the wire capacitance when driving a logic ’1’,

and to discharge that capacitance when driving a logic ’0’. Building on this observation, and on

the body of work on low-power bus encodings [38, 205], value-deviation-bounded serial encoding

(VDBS encoding) [212, 214] trades correctness for improved communication energy efficiency by

lossy filtering of values to be transmitted on an I/O link. VDBS encoding reduces the number of

’0’ to ’1’ and ’1’ to ’0’ signal transitions and hence reduces the energy cost of I/O. Because VDBS

encoding requires no decoder, it can be implemented with low overhead, requiring less than a

thousand gates for a typical implementation [208]. Extensions of VDBS encoding have extended

the basic concept to exploit temporal information in information streams [109, 155] and to employ

probabilistic encoding techniques [209].

A recent study leverages data similarity between cache blocks to perform lossy compression

in networks-on-chip (NoCs) [22]. The key idea is in simple data-type aware approximation using

approximate matching between data to be sent and data items that have been recently sent to

perform a quick lossy compression. Performing approximation at the network layer allows a

significant data movement reduction without losing the precise copy of the data and without

extending the critical path, as the communication and compression are overlapped.

An orthogonal approach to trading resource usage for correctness in communication by com-

pression, is to reduce the safety margins of communication links to trade off their reliability for

bandwidth, latency, or both. For on-chip networks, achieving reliable transmission in low-latency

high-bandwidth interconnects requires features like forward error correction (FEC), but FEC can

increase communication latency, by up to three fold in one study [64]. An approach to counteract

such high overheads is to allow higher bit error rates at the link layer by removing forward error

correction or employing a weaker but more efficient error correction mechanisms, with a variable

amount of redundancy based on application needs [64]. A low-diameter network is one approach

to keep the end-to-end bit error rate under control, minimizing the number of hop counts, and thus

prevent excessive accumulation of errors [64].

Allowing errors in communication can be particularly challenging in parallel programs, which

rely on communication for synchronization. In such contexts, failure to deliver correct messages on

time can affect control flow and lead to catastrophic results [241]. Yetim et al. propose a mechanism

to mitigate inter-processor communication errors in parallel programs by converting potentially

catastrophic control flow or communication errors into likely tolerable data errors [241]. Their

main insight is that data errors have much less impact on the application output compared to errors

in control flow. Their approach is to monitor inter-processor communication in terms of message

count, and to ensure that the number of communicated items is correct, either by dropping excess

packets or by generating additional packets with synthetic values. Ensuring the correct number

of exchanged messages improves the integrity of control flow in the presence of communication

errors and consequently improves the output quality of approximate parallel programs.

6.5 Summary
Microarchitectural techniques that trade correctness for resources build on circuit level techniques

(Section 5) to exploit information at the level of hardware structures such as caches, register

files, off-chip memories, and so on. Architectural techniques expose microarchitectural techniques
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to software through constructs such as instruction extensions, new instruction types, or new

hardware interfaces to accelerators. Exposing information about hardware techniques to software

allows software to take advantage of the implemented techniques, while exposing information from

software to hardware allows hardware to, for example, more aggressively leverage tradeoffs between

correctness and resource usage. In the same way that circuit-level techniques form a foundation

for the approaches discussed in this section, circuit-level, microarchitectural, and architectural

techniques similarly form a foundation for operating system and runtime system techniques.

7 PROGRAMMING LANGUAGE TECHNIQUES
Many programming-language- and compiler-level techniques that trade correctness for efficiency

provide abstractions for dealing with errors introduced at lower levels of the system stack, or

introduce higher-level approximations directly and these errors combine into whole-application

errors. Previous research presented a variety of automated transformations, together with the

reasoning mechanisms that verify or estimate the accuracy of the whole-application results.

This section focuses on the techniques for reasoning about approximations and managing their

impact on program execution. We divide the techniques into two broad categories: (1) static compile-
time techniques ensure that tradeoffs are safe to apply for all inputs, without running a program

and (2) dynamic tuning techniques typically execute the program on a set of representative inputs to

estimate the benefit and safety of the transformations (off-line), or monitor the program execution

at runtime to tune the level of approximation (on-line).

7.1 Notation
Following the notation introduced in Section 4, programming language techniques usually operate

at a level of abstraction where the computation’s implementation f : I × O is defined over a sets

represented by, e.g., integers or floating-point numbers. These integer and floating-point number

representations serve as an abstraction for the actual bit-level representations of program state

in hardware. The idealized specification f ∗ that f implements may thus, for instance, assume

unbounded integers or real numbers for its output O and may represent an entire computational

problem or specific algorithm. Examples of errors introduced by the discrepancy between f and

f ∗ are floating-point roundoff errors, errors due to skipping entire portions of a computation or

due to missing synchronization. To quantify the end-to-end error, a developer typically specifies

a distance d ( f , f ∗). Examples distances include absolute error, relative error, worst-case error,

or error probability. Selecting the appropriate distance and its acceptable threshold are typically

application-dependent.

7.2 Static compile-time techniques
Static techniques aim to make resource versus correctness tradeoffs safe to apply without having to

run a program. Safety of approximate programs ensures that (1) the errors caused by the approxi-

mation never make the program crash, diverge, or violate other important program properties, and

(2) the result of the approximation is acceptable, i.e., that the magnitude and frequency of errors

is within certain bounds. Errors introduced at the lower levels of the stack do not affect every

operation of a high-level program equally. Ideally, errors in lower layers of the stack should be

restricted to locations such that when they propagate to higher layers of the stack, they only affect

those parts of the program where errors can be tolerated.

Conventional programming languages, however, do not provide a transparent way to mark what

can be potentially approximate. Several approaches propose annotations that allow the developer

to make the effects of lower-level errors explicit: EnerJ [180] (“approx” and “precise” data types),

Asymmetric RHL [20, 29] (“relax” and “relate” variable annotations), and FlexJava [158] (“loosen”

and “tighten” variable annotations). These techniques use type inference, theorem proving, and

Publication date: May 2020.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

51:20 Stanley-Marbell et al.

taint analysis, respectively, to mark all data/instructions that may be affected by errors. They can

verify important safety properties, e.g., EnerJ ensures that approximate data cannot impact the

values of precise data.

Rely [30] extends the scope of program analysis to probabilistic errors: it automatically derives

the probability of a result being exact, given the probabilities of individual operations being exact.

Decaf [21] presents an alternative approach for deriving probabilities using type inference. More

recently, Parallely [62] extends the reliability analysis to parallel message-passing programs by

reducing them to equivalent sequential programs. For a more precise analysis that considers the

case of diverging control flow, Lohar et al. [127] present a sound static analysis that can take

advantage of probability distributions provided by the developer.

The probability of a computed value being incorrect does not capture the numeric magnitude of

the error. Numeric error estimation has been addressed in the form of static analysis for bounding

errors due to input disturbances [34], optimizing finite-precision arithmetic [39, 48] and approx-

imating elementary function calls [93] while guaranteeing sound error bounds. Numeric error

magnitude can also be estimated by differential program verifiers to check relative safety, accuracy,

or termination with respect to some reference implementation by reduction to a satisfiability modulo
theories (SMT) problem [82].

The above approaches either quantify the probability or the error magnitude, but not both.

Furthermore, they do not optimize directly for performance or energy usage. Zhu et al. [244]
propose a framework which explores a randomized combination of resource-correctness tradeoffs

provided by a user. It presents a tradeoff space exploration algorithm based on linear programming,

which provides near-optimal guarantees. Chisel [139] combines a reliability analysis with error

bounds computation. It automatically finds approximations satisfying a specification and minimizes

energy by reduction to an integer linear problem. Lohar et al. [128] provide a dataflow-based

probabilistic error analysis which computes the probabilities of different error magnitudes.

Static techniques are desirable as they can provide strong correctness guarantees. However, for

a static optimization technique, a faithful resource cost model is needed. Until now, these models

have been mostly high-level, coarse, and additionally not consistent across different techniques

or evaluations, making combinations and comparisons of different techniques challenging. These

models necessarily have to abstract over the underlying hardware in order to be scalable and widely

applicable, but they also need to reflect reality as much as possible. Here, a tighter collaboration

between the software and hardware is needed (see Challenge 2 in Section 11).

7.3 Dynamic tuning techniques
Static guarantees are in practice achievable only for small programs. For many applications such

strong guarantees may not be necessary. Dynamic or testing-based validation techniques trade cor-

rectness for practical scalability and have been widely used to identify resource versus correctness

tradeoffs and to validate the quality of these tradeoffs.

A first step when implementing an application in an error-efficient way is to determine which

parts of the application are resilient to errors and which are not [172, 173]. Different applications

allow for error-efficient computing to various degrees. For instance, some algorithms can tolerate

higher error rates but lower error magnitudes and vice versa [41].

Profiling has traditionally been used to identify performance-intensive portions of a program. A

quality of service profiler [141] takes into account quality of the results in addition to performance

and can thus identify resilient portions of an application. A similar idea has been explored by

the ARC framework [41], which profiles an application while injecting errors, derives a statistical

error-resilience profile, and identifies the best error-efficient technique for the given application.

The statistical error-resilience profile has also been explored for iterative workloads [68] to identify
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the number of resilient iterations. Passert [182] and AxProf [96] use statistical testing to determine

the confidence of specifications for randomized approximate programs.

Once resiliency of an application is established, a developer or a compiler can apply various

transformations. There are several interesting directions here:

• In arithmetic, Precimonious [175] assigns differing floating-point precisions across the variables

in a program. STOKE [188], on the other hand, generates entirely new implementations of floating-

point functions. Both Precimonious and STOKE ensure that on a given test set a user-defined

quality bound is satisfied.

• Since loops usually make up the bulk of running time of a program, loop perforation [87, 141, 199]

selectively skips entire loop iterations. Adaptive perforations have been subsequently explored

in image processing [129], neural networks [63], and at a finer-level of granularity [121, 144].

• Approximate memoization interpolates skipped data using the already computed one, thus

reducing error. Variants of approximate memoization have been proposed by several works [34,

143, 177, 178, 224], exploiting both temporal and spatial locality of data. Neural networks can

also be used to replace blocks of imperative code [58] and can provide a performance benefit

when coupled with a dedicated neural processing unit.

• Synchronization is another expensive part of many applications, and several research efforts

have observed that some synchronization primitives can be removed without impacting quality

significantly [28, 49, 140, 142, 171, 172]. Quickstep [140] explores nondeterminism as a technique

for trading resource usage for correctness techniques, by parallelizing a sequential program such

that data races can occasionally occur. STAS [49] proposes generating alternative data in parallel,

to prevent waiting at synchronization points and to improve thread-level parallelism.

Another approach to exploiting resilient applications is to let a user define several application

components with different resource-correctness tradeoffs and to provide tool support to select

between these candidates to obtain a final implementation [8, 9, 12, 52, 61]. The search can be

optimized with sensitivity analysis [227]. The Intel open-source approximate computing toolkit

(iACT) [143] provides a simulation-based testbed for different approximations, such as precision

scaling and approximate memoization.

Although not all resource versus correctness tradeoffs are suitable for all application domains,

most of the techniques discussed above are application-independent. Chippa et al. [42] and

Venkataramani et al. [230] present application-specific approaches for machine learning classifiers

which exploit the fact that many instances are easy to classify. These easy-to-classify instances are

handled by simpler classifiers, while harder-to-classify instances use increasingly more complex

classifiers. IRA [115] tunes approximation fully at runtime using canary inputs—a small representa-

tion of the full input (e.g., a thumbnail of an image). The optimization can tailor the approximation

to the input properties, while the overhead is small. This approach has been extended to video

processing [236].

Several techniques emerged for optimizing data-parallel and heterogeneous applications, beyond

CPU. SAGE [178] and Paraprox [177] pioneered the approximation of data-parallel kernels running

on GPUs and provide specialized approximate versions of common idioms, such as maps and

reductions. Kernel perforation [132] skips loading chunks of input data from global memory, and

reconstructs it in the local memory to improve accuracy, thus saving on data transfers. For compos-

ing multiple approximations in heterogenous systems, ApproxHPVM [194] tunes the computation

(e.g., a DNN layer) executing it at each processing unit (with its own set of approximation knobs).

7.4 Summary
The techniques discussed above are first steps towards addressing the need for automated tool

support for developers (Challenge 3 in Section 11) but they remain limited because each addresses
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one particular point in the design space. More comprehensive tools and ways to combine the

existing techniques are necessary. One solution might be for researchers to make their program

analyses and program transformations available as passes for the LLVM compiler infrastructure.

Today, many techniques employ a simplified model of the underlying hardware and these models

are rarely based on characterization of real hardware systems. In the future, error models will need

to be consistent with the errors observed at the hardware level. In addition to these extensions

of the way software-level techniques are evaluated today, end-to-end evaluation platforms could

provide increased confidence in research results (Challenges 2 and 8 in Section 11).

8 OPERATING SYSTEM AND RUNTIME TECHNIQUES
Operating system (OS) and runtime techniques for trading correctness for efficiency dynamically

monitor a running system and adapt its accuracy to a changing environment. These systems may

take explicit input from a program, such as through an application programming interface (API) or

system call interface, or might be driven based on user input.

8.1 Notation
For OS and runtime techniques, measuring, sampling, and quantizing signals from the physical

world are already completed by the lower layers of the system. Following Section 4, computation

is a nondeterministic function f ∗ : Qm → Qo with nondeterminism introduced by the need to

multiplex processes over a shared resource (the processor) in the presence of asynchronous input

and output events, user interaction, and time-varying power supply limitations. Actuation typically

takes the form of I/O (e.g., network, peripherals, displays).

At the OS/runtime level, the computation specification relation, f ⊆ I × O takes the form

of guarantees provided by the system. These may be guarantees and the resulting definition

of correctness in terms of the numeric behavior of the computation, or may be guarantees on

timeliness of operations in real-time and interactive computing systems. At this layer, faults and

errors typically refer to the failure of a component from the architecture level and its manifestation

in a difference in machine state respectively.

8.2 Runtime systems: computation
Trading timeliness guarantees for reduced resource usage was heavily explored in the 1990s,

in research efforts on imprecise realtime systems [11, 91, 123, 124, 195]. Much like the recent

resurgence of interest in trading correctness for resource usage, these earlier efforts were targeted

at an application domain (embedded systems) where the relaxation of correctness requirements

was motivated by the inherent nondeterminism of their operating environments.

The Eon system [200] provides a declarative language which allows users to annotate components

with different energy specifications, which are then used at runtime to select suitable components.

Green [12] builds a quality of service model during a calibration phase based on approximations

supplied by the programmer. This model is used at runtime to select suitable approximations and

occasionally to recalibrate by running the approximate and exact subcomputations side-by-side.

Hoffman et al. [88] turn static configuration parameters into dynamic knobs which can adjust

the accuracy and energy usage of a system at runtime; An off-line calibration pass minimizes

monitoring overhead at runtime. Follow-up work presents an optimization in the general tradeoff

space between performance, energy, and accuracy [86]. Chippa et al. [40] propose a general

framework which phrases the dynamic management as a feedback system and further suggest

different quality measurements at the circuit, architecture, and algorithm level which serve as the

feedback signal. Capri [219] proactively determines the configuration of the approximate program

before each run, by formulating and solving a constrained optimization problem, which minimizes

cost (performance) subject to error (accuracy loss).
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To manage noisy data during execution (e.g., from sensors), the Uncertain<T> system [18] encap-

sulates probability distributions as types. Uncertain data are stored and manipulated as probability

distributions, in a way that is transparent to the developer. At each conditional, Uncertain<T>

infers the number of samples necessary to make a high-confidence decision.

Most previous runtime approaches consider average errors or only check the errors occasionally

during execution, and can thus miss large outliers. Rumba [106] checks all results with light-weight

checks and proposes an approximate correction mechanism, which is specific to data-parallel

applications. Topaz [1] also verifies every result, but at a higher granularity, by decomposing a

computation into tasks. Topaz checks each task’s output with lightweight checks provided by the

user. If the error is too large, Topaz automatically re-executes the corresponding task.

8.3 Runtime systems: sensors, actuation, and displays
All measurements have some amount of measurement uncertainty and as a result, sensing systems

provide many opportunities for trading errors for improved efficiency. These range from trading

accuracy and reliability in sensors in the Lax system [213], to trading precision for fidelity in

imaging sensors (cameras) [25], to trading the fidelity of display colors and shapes for reduced

display panel power dissipation for OLED displays in Crayon [207].

8.4 Summary
OS and runtime techniques provide a unique opportunity to exploit dynamic information about

running programs. Unlike circuit-level, microarchitectural, architectural, or language-level tech-

niques, they can exploit information about a user’s environment such as remaining energy store in

a mobile device or activation of a low-power mode on the device. OS and runtime techniques also

have the opportunity to learn across program executions. Hardware platforms for exploring the

end-to-end benefits of the techniques presented in this survey (Challenges 2 and 8 in Section 11)

may however be necessary for a meaningful evaluation of real-world benefits.

9 TAXONOMY
Table 1 highlights techniques for trading correctness for resource usage discussed throughout

this survey. The table focuses on publications that present a specific technique as opposed to

publications discussed in the survey to provide context. Table 1 classifies techniques by three

primary categories: (1) error type, (2) property traded for errors, and (3) affected resources:

• The error type refers to the nature of the error that gets introduced into a system. Given

the same input and set of initial conditions, a technique is deterministic if it will always cause

the same outcome and a technique is nondeterministic if the outcome can differ.

• The property traded for errors is one of energy, time, and data density. These are cost
functions that a system designer optimizes for. In the context of this survey, we consider

trading an improvement in one or more of these properties for increased occurrence of errors.

• The affected resources are the hardware subsystems that are impacted by the tradeoffs. In

practice, these will be the subsystems in which errors occur.

Although the table places publications in discrete categories, many techniques lie somewhere

in a spectrum. For example, when voltage overscaling (Section 5.6) is performed at a coarse level

(e.g., in steps of 500mV for a device with a supply voltage range of 1.8 V to 3.3 V), it could be seen

as a deterministic technique where some voltage levels always lead to repeatable failures. On the

other hand, if voltage overscaling is performed at a fine granularity of voltages (e.g., 50mV), there

will likely be one or more voltage levels where nondeterministic failures occur, resulting from the

interplay between devices operating right at the threshold of the minimum voltage for reliable

operation, and falling below that threshold due to power supply noise or thermal noise.
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Table 1. Highlights from the techniques covered in this survey, from circuit-level techniques, to architecture-
level techniques, to algorithmic and programming-language-level techniques, to operating system techniques.
We classify the techniques under the three broad categories of (1) error type, (2) property traded for errors,
and (3) affected resources. (PL: Programming language; OS: Operating system.)

Layer Technique Examples Error Type Property Traded for Affected Resource
Errors
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Circuit Sensor value approximation [25, 213] • • •

Probabilistic sensor comms. [209] • • •

Probabilistic computing [31, 35, 67, 107, 156] • • •

Stochastic computing (non-det.) [65, 112] • • •

Stochastic computing (det.) [75, 151] • • •

Voltage overscaling [81, 84, 100, 102, 114] • • •

Logic pruning [136, 189, 197] • • • • •

Approximate addition [76, 99, 131, 137, 243] • • • • •

Approximate multiplication [80, 95, 113, 170] • • • • •

RTL approximations [152, 166, 231] • • • • •

Approx. high-level synthesis [118, 120] • • • • •

Voltage overscaled SRAM [19, 32, 66, 198] • • •

NVRAM noise margins [167] • • •

Architecture Deterministic lossy I/O [109, 208, 214] • • •

Voltage overscaling [58] • • • •

Analog neural acceleration [204] • • • •

Digital neural acceleration [59, 150, 238] • • • •

Anytime computation [138] • • •

Approximate reads [167] • • • •

Approximate writes [181] • • • •

Reuse of failed data blocks [181] • • •

Variable redundancy [64, 74, 94] • • •

Approx. cache de-duplication [183, 184] • • •

Load-value approximation [185, 221] • • • •

Low-refresh DRAM [98, 125, 165] • • •

In-network lossy compression [22] • • •

PL Floating-point optimization [39, 48, 175] • • •

Neural approximation [58] • • • •

Relaxed parallelization [28, 140, 142, 171, 172] • • •

Compiling to approx. hardware [29, 139] • • •

Data-parallel kernel approx. [177] • • •

Isolation of approx. data [158, 180] • • • • •

Algorithm approximation [93, 188] • • •

Loop perforation [87, 141, 199] • • •

OS Display color approximation [207, 217] • • •

Drivers for approx. sensors [213] • • •

Dynamic accuracy adaptation [12, 88, 200] • • •

Task-level approximation [1] • • •

At the circuit level, most techniques in the research literature to date have focused on trading

errors for energy efficiency and to a lesser extent, performance and data storage density. At this

level of the system stack, the focus has been overwhelmingly on computation resources (e.g.,

arithmetic/logic units (ALUs)) as the Affected Resources columns in Table 1 show.

Most of the architectural techniques in Table 1 target computation at a coarse grain (e.g., analog

and digital neural accelerators). A majority of the architectural techniques listed in Table 1 apply
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to data movement and storage such as on- and off-chip memories, memory hierarchy data traffic,

and on- and off-chip I/O links.

Programming language techniques have largely focused only on techniques that affect com-

putation, as the Affected Resources columns in Table 1 show. This is unsurprising, since most

programming languages focus on providing primitives and abstractions for computations (as

opposed to, say, communication). There is potentially an unexplored opportunity to investigate

techniques for trading errors for efficiency applied to language-level constructs for communication

such as the channels in Hoare’s communicating sequential processes (CSP). One early investigation

of this direction is the M language, which provided language-level error, erasure, and latency

tolerance constraints [210] on CSP-style language-level channels.

Techniques implemented at the operating system (OS) level, such as application programming

interfaces (APIs), standard system libraries, device drivers, and so on, have the unique vantage

point of seeing all system processes. Techniques at the OS-level often have a global view of the

system hardware, and visibility into application behavior beyond a single execution instance. OS-

level techniques also have access to information about user preferences, such as activation of a

low-power mode on a mobile device. Despite these potential advantages of OS-level techniques

for trading errors for efficiency, there have been relatively few techniques implemented at this

level of abstraction. The techniques which Table 1 lists target improving energy efficiency and

do so primarily by trading the use of sensors, displays, and coarse-grained application level error

behavior for improved efficiency.

10 FUNDAMENTAL LIMITS OF RESOURCE VERSUS CORRECTNESS TRADEOFFS
Section 5 through Section 8 presented concrete techniques for trading resource usage for correct-

ness at levels of abstraction ranging from the device-, gate-, and circuit-level, to the operating

system. For techniques at each of these levels of abstraction, this article formulated the resource

usage versus correctness tradeoff in terms of a computational problem, its implementation in an

algorithm, and a distance function d between the state representations of a computation’s correct

and resource-reduced variants. That relation between a computation’s input and output or between

a computation’s state prior to and subsequent to computation has parallels to communication

systems. We can draw an analogy between the state transformation performed by an algorithm

which must consume resources (time, energy, die area) to achieve the exact behavior specified by the

computational problem which it implements, and source- and channel-coding for communication

over a channel: Source- and channel-coding which likewise consume resources in order to maximize

the mutual information between the transmitter and receiver over a channel. Von Neumann [233],

Berger and Gibson [17], Evans [60], Maggs [43], Elias [56], Spielman [201], and Shanbhag [83],

among others, have previously drawn similar analogies between resource usage versus correctness

tradeoffs and communication channels. And doing so provides a useful lens through which to study

the fundamental limits of resource usage versus correctness tradeoffs in computing systems.

10.1 From information and coding theory to coded computation
The study of fault-tolerant systems dates back to von Neumann’s investigation [233] of building

reliable systems from unreliable components. Fault-tolerant systems research has focused more

heavily on a coarser-grained view. In contrast, information theory focuses on the mathematical study

of communication over noisy channels [193] while coding theory studies methods for judiciously

trading redundancy in data representations for either reduced transmission time (source coding) or

improved end-to-end reliability in transmission over a noisy channel (channel coding).

In contrast to channel coding techniques whose objective is to counteract the effect of noise,

Chen et al. [36] exploit the presence of noise to improve image processing tasks, demonstrating how

adding Gaussian noise to quantized images can improve the output quality of signal processing
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tasks. This observation that noise can improve a computing system’s performance has parallels to

randomized algorithms (see, e.g., Section 9).

Classical information and coding theory rely on the assumption that noise only occurs in commu-

nication, rather than in computation. In contrast, recent research has begun to study the fundamental

limits of encoders [237] and decoders [226, 240] built on top of hardware implementations that are,

like the communication channel, susceptible to noise. Similarly, recent research has investigated

techniques for executing computation on encoded representations in order to obtain exact or

approximate results in the presence of noise. These methods have been referred to in the research

literature as coded computation [73, 163]. One plausible direction for future research is to identify

computing abstractions that unify the above techniques via new computational operators that

execute on encoded representations. Stochastic computing [4], hyper-dimensional computing [161],

and deep embedded representations (deep learning) offer promising examples.

10.2 Theoretical bounds
Recent research has used information theory as a foundation to investigate theoretical bounds on

performance [239], efficiency [206], energy consumption [33], Shannon-style channel capacity and

storage bounds [206, 226] for computing and communication systemswhich trade resource usage for

correctness. Varshney [226] demonstrates Shannon-style bounds on storage capacity in the context

of noisy LDPC iterative decoders. Stanley-Marbell [206] derives best-case efficiency bounds for

encoding techniques which limit the deviations of values in the presence of logic upsets. Chatterjee

et al. [33] present lower bounds on energy consumption for achieving a desired level of reliability

in computation of an n-input Boolean function and Yazdi et al. [239] formulate an optimization

problem to produce a noisy Gallager B LDPC decoder that achieves minimal bit error rate, by

treating unreliable hardware components as communication channels as in stochastic computing

(see Section 5 for coverage of stochastic computing). These recent research efforts demonstrate

that information and coding theory can provide a baseline to derive bounds on efficiency, capacity,

energy consumption, and performance in the systems of interest in this survey: computing systems

which trade resource usage for correctness.

10.3 Application-aware source and channel coding across the hardware stack
Mitigating the effects of errors across the stack will ultimately require encoding techniques, applied

across the layers of the stack that are designed to take advantage of application characteristics.

Early examples of such application-aware codes can be found in the work of Huang et al. [90] which
proposes a redundancy-free adaptive code that can correct errors in data retrieved from potentially

faulty cells. The technique relies on an application-specific cost function and an input-adaptive
coding scheme that pairs a source encoder that introduces modest distortion, with a channel encoder

that adds redundant bits to protect the distorted data against errors. Adaptive coding can greatly

reduce output quality degradation in the presence of noise, compared to naïve implementations

where noise is allowed to traverse the stack unchecked.

10.4 Summary
Information and coding theory today form the basis for techniques to analyze and model noisy

communication and storage systems as well as techniques to counteract the effects of noise. With

the emergence of approximate computing, there is an opportunity to investigate new approaches

to source and channel coding. These new approaches could explicitly take into account the specific

noise distributions observed in practice and could explicitly take into account the requirements

of the applications consuming the data in question. These new challenges require a unifying

mathematical theory to reason about errors, efficiency, and capacity bounds.
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11 CHALLENGES
We identify eight challenges facing both research and applications of techniques to trade correctness

for resource usage.

Challenge 1: Holistic cross-layer approaches. A whole-system view to trading errors for

efficiency requires expertise in the target application domain and in multiple levels of the computing

stack. Most of the existing approximation and error-handling mechanisms are designed in the

context of a single layer in the stack. This is likely to be suboptimal. Techniques in different layers

can easily negate each other, where gains reported in isolation may not translate into real system-

level benefits in the end. At the same time, techniques in different layers may complement each

other, where significant opportunities for cross-layer optimizations can be expected. A full-stack

view of error-efficient system design requires less insular approaches. A cross-layer approach

will however significantly increase the size of the design space and could introduce significant

additional design complexity. Early proposals for “approximating outside the processor” [211]

and recent proposals for “approximating beyond the processor” [164] are promising directions for

holistic approximate systems.

Challenge 2: Hardware models, hardware platforms, and measurement data. Most soft-

ware-level techniques employ models or abstractions of the errors and performance of the underly-

ing hardware in order to achieve modularity and scalability. Examples of hardware error models

assumed today include assumptions about the distribution of locations and values of errors caused

by voltage overscaling in microarchitectural structures and memories, or assumptions about the

distribution of errors in DRAMs that are not refreshed as regularly as they should be. Similarly,

lower levels of the software stack may expose higher-level models to, e.g., application developers.

Today, different research efforts often use different models, which makes comparisons between

research results difficult and raises questions about the validity of reported resource savings. Error

and performance models which have been validated by the hardware community, e.g., by hardware

measurements and which are suitable for the software levels of the stack would be an invaluable

contribution to the research directions described in this survey. In order to make credible claims

about across-the-stack approximations, the proposed techniques need to be evaluated end-to-end

either on actual state-of-the-art hardware platforms or with realistic simulations. Such end-to-end

evaluations with an agreed-upon platform is missing today. Early examples in this direction in-

clude measurement results from open hardware platforms explicitly designed to expose accuracy,

precision, performance, and energy efficiency tradeoffs [216, 218].

Challenge 3: Hardware emulation/simulation, software tools, languages, and compiler
infrastructure. Applying error versus resource tradeoffs in software requires tools that help

programmers and systems builders take advantage of techniques in a systematic and controlled

way. It also requires hardware simulators or emulators that help bridge the gap between the fidelity

of hardware prototypes and the flexibility of software simulation. On the hardware simulation side,

these tools would ideally provide support for end-to-end evaluation of entire systems, to be used

in comparing different proposed techniques. Language and compiler tools would include those

to support testing, debugging, and dynamic quality monitoring. First steps in this direction for

compiler tools include ACCEPT [179].

Challenge 4: Application domains and algorithmic patterns. Today, there is insufficient

consensus on well-defined classes of application domains and algorithmic patterns that constitute

a preferential target for relaxations. First steps include the definition of “Recognition, Mining, and

Synthesis” application classes [54]. A standard benchmark set which has been agreed upon by

the wider community would increase progress and comparability of different techniques, like it

has done for SAT/SMT solving. Such a benchmark set should ideally cover different domains and
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include also real-world ‘challenge applications’ which cannot be solved today, but which would

convincingly demonstrate the viability of error-efficient computing.

Challenge 5: Large-scale user studies to provide empirical characterization of accept-
ability. User studies with thousands of participants will be necessary to provide quantitative

data [126], which researchers can use when proposing techniques that exploit tolerance of human

observers to deviations from correctness of program results. Initial steps in this direction include

the “Specimen” dataset of color perception data used in color approximation techniques [27, 217].

Challenge 6: Metrics. When applying techniques to an application, it would be useful to have

a reliable error metric to guide the optimization process. In the ideal case, that error metric would

be binary: “correct” and “not correct.” But in reality, correctness and its boundaries are not well

known for many applications. The metrics in question might be broadly applicable to many systems,

or might be application-specific metrics used to measure Pareto-optimality. Early work in this

direction includes the work of Akturk et al. [3].
Challenge 7: Studies of the theoretical bounds on resource usage. Theoretical upper and

lower bounds are invaluable in guiding research as they set the bar for what is achievable. Such

bounds are needed for a given formally-defined specification of deviation from correctness. One

promising direction are bounds on encoding overhead for communication encoding techniques

which trade communication energy use or performance (data rate) for integer deviations in com-

municated values. Examples of first steps in this direction include work on the bounds of encoding

efficiency for deterministic and probabilistic approximate communication techniques [206, 212].

Challenge 8: Reproducibility and deployment of techniques. This survey describes a broad

range of techniques, from circuits to algorithms. For many of the research results across these layers,

it can be challenging to replicate the setup, tools, or benchmarks employed in evaluations. Beyond

good scientific practice of describing experiments in sufficient detail to be reproducible, because

there is today no common consensus even on many aspects of terminology, it is challenging to

compare, replicate, and build upon research results. This survey attempted to address the challenge

of terminology with a consistent set of formal definitions across the layers of a system (Section 4).

Further progress is however needed. Opportunities include greater availability of open-source

libraries. First steps for low-power and high-performance approximate arithmetic components

include synthesizable Verilog/VHDL files and behavioral models in C/MATLAB [190, 191].

12 RETROSPECTIVE AND FUTURE DIRECTIONS
Computing systems use resources such as time, energy, and hardware to transform their inputs to

outputs. For many years, the primary driver of efficiency improvements in computing were a com-

bination of improved semiconductor process technology and better algorithms. In the last decade,

two important shifts have forced a fundamental re-evaluation of the hardware driver of efficiency

improvements. First, with the cessation of constant-field Dennard scaling and the stagnation of

device supply voltages, process technology scaling no longer provides the improvements in energy

efficiency that it once did. Second, in contrast to traditional computing applications such as financial

transaction processing and office productivity, the dominant computing system applications are

increasingly driven by inputs from the physical world (audio, images) with outputs for consumption

by humans. Applications driven by data from the physical world have essentially unbounded input

datasets, and this has partly motivated a resurgence of interest in machine learning approaches

to learning functions from large datasets. The stagnation in hardware device-level improvements

coupled with increasingly ever more abundant sensor-data-centric workloads has led to a need

for new ways of improving computing system performance. This survey explored techniques to

address this challenge of computing on data when less-than-perfect outputs are acceptable for a

computing system’s users.
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