FLEX: Fixing Flaky Tests in Machine Learning Projects by Updating Assertion Bounds

Saikat Dutta
UIUC
Urbana, USA
saikatd2@illinois.edu

August Shi
The University of Texas at Austin
Austin, USA
august@utexas.edu

Sasa Misailovic
UIUC
Urbana, USA
misailo@illinois.edu

ABSTRACT

Many machine learning (ML) algorithms are inherently random – multiple executions using the same inputs may produce slightly different results each time. Randomness impacts how developers write tests that check for end-to-end quality of their implementations of these ML algorithms. In particular, selecting the proper thresholds for comparing obtained quality metrics with the reference results is a non-intuitive task, which may lead to flaky test executions.

We present FLEX, the first tool for automatically fixing flaky tests due to algorithmic randomness in ML algorithms. FLEX fixes tests that use approximate assertions to compare actual and expected values that represent the quality of the outputs of ML algorithms. We present a technique for systematically identifying the acceptable bound between the actual and expected output quality that also minimizes flakiness. Our technique is based on the Peak Over Threshold method from statistical Extreme Value Theory, which estimates the tail distribution of the output values observed from several runs. Based on the tail distribution, FLEX updates the bound used in the test, or selects the number of test re-runs, based on a desired confidence level.

We evaluate FLEX on a corpus of 35 tests collected from the latest versions of 21 ML projects. Overall, FLEX identifies and proposes a fix for 28 tests. We sent 19 pull requests, each fixing one test, to the developers. So far, 9 have been accepted by the developers.

CCS CONCEPTS

• Software and its engineering → Software testing and debugging.

KEYWORDS

Flaky tests, Machine Learning, Extreme Value Theory

1 INTRODUCTION

Many emerging applications in computer vision, natural language processing, and medical diagnosis are implemented using Machine Learning (ML) algorithms such as Deep Learning [31], Reinforcement Learning [43], or Probabilistic Programming [32, 33]. The recent pervasiveness of ML algorithms has led to the emergence of general-purpose libraries and specialized tools that build on top of these libraries. Many ML algorithms are inherently random – each execution of the algorithm may produce a slightly different result. Such randomness has an impact on how to carefully check the implementations of these algorithms, because the tests have to account for the variability of computed results from the code under test.

A common class of tests in existing ML projects are integration tests that check for end-to-end quality of the implementation of an ML algorithm. Such tests typically 1) create a small fixed or randomly generated dataset, 2) train the model on the dataset, 3) perform inference on the trained model, and 4) compute quality metrics and check if they are acceptable. Some common quality metrics include inference accuracy, recall, and error rate. When developers write their tests, they implement property checks using approximate assertions [18, 19, 54] that compare the metric to an acceptability bound, e.g.,

assert (accuracy ≥ threshold).

Developers typically choose the bounds based on intuition and experience with the code under test. These choices are often ad-hoc and not well-understood, especially when the developers are testing implementations of ML algorithms that inherently rely on some degree of randomness. While randomness in implementations of ML algorithms can be controlled through setting seeds in the underlying pseudo-random number generator(s), doing so can make the test less effective as it limits possible executions that can potentially help expose real bugs in the implementation [19]. However, by keeping randomness throughout, the tests may become flaky [49] – test executions can fail non-deterministically even when there is no bug in the implementation. The chance of flaky test failures depends on how tight the developer-selected bound α is. An important question then becomes how to systematically select such bounds so that test flakiness can be minimized to a desirable level.

Our Work. We present FLEX, the first tool for automatically fixing flaky tests due to algorithmic randomness. FLEX focuses on tests that use approximate assertions to compare the actual and expected quality of ML algorithm results. FLEX transforms the test and systematically selects appropriate assertion bounds that reduce the chance of flaky failures.

The key challenge is to determine how to estimate appropriate assertion bounds with high statistical confidence. FLEX’s solution is...
based on Extreme Value Theory (EVT). EVT [14, 26, 64] is a branch of statistics, often used in finance and hydrology, that can model extreme events, such as market risks (finance) or occurrence of extreme floods (hydrology). Given an input sample of measurements of some observed variable, EVT models the tail of the distribution, which can then be used to compute the likelihood of extreme values. The advantage of using EVT is that, in the limit, the tail distribution will converge to a specific group of probability distributions.

We use the Peak Over Threshold (POT) [64] method from EVT to estimate the tail distribution of a ML algorithm’s result quality. With this method, the tail distribution converges in the limit to an instance of the Generalized Pareto Distribution (GPD) [64]. GPD is parameterized by a shape parameter, which determines if the measured quantity has a tail (left or right) that is exponentially bounded. An exponentially bounded tail converges quickly to GPD and can be used to estimate an appropriate bound for the variable in the failing assertion. On the other hand, a heavy tailed distribution cannot provide a reasonable estimate. In such a case, we either collect more samples (to get a better estimate) or resort to alternative test fixing strategies.

FLEX records the actual values in the assertion (e.g., the variable accuracy in the example assertion earlier) from multiple executions. It then uses the recorded values to estimate the GPD as representative of the tail distribution. Since the tail distribution converges to GPD only in the limit, FLEX uses statistical methods to find the sufficient number of samples of the output value that leads to convergence. FLEX then uses the inferred GPD to determine the likelihood of the extreme values and choose an assertion bound \(\alpha \) that keeps the chance of the test failure below a pre-specified probability \(C \).

FLEX implements several test fix strategies to reduce flakiness:

- **Update the assertion using a statistical tail bound**: FLEX handles two kinds of assertions. First, for assertions that compare the absolute values (e.g., the variables accuracy and \(\alpha \) from our earlier example assertion), FLEX collects the samples of the actual value accuracy, computes the bound satisfying the confidence level using POT, and updates the constant \(\alpha \) with the new bound. Second, for assertions that use bounds for differences between two values, FLEX estimates the tail distribution of the differences and updates the bound based on the tail estimate.

- **Update the assertion using an empirical bound**: FLEX updates the assertion as in previous strategy, but instead of computing GPD, it uses an empirical bound computed using bootstrap sampling [22]. It is used when the POT method fails to compute the tail distribution or produces a heavy-tailed distribution.

- **Rerun the test to improve confidence**: FLEX does not modify the test body, but marks it using the #F1aky annotation [25] so that the test is re-run on failure, only declaring true failure if it fails for all re-runs; this annotation then reduces the chance of a flaky failure stopping a build. Currently, developers may use reruns and specify the number of repetitions based on some intuition. Instead, FLEX determines the number either from the estimated GPD (when available) or using the observed failure rate. Updating the thresholds in the assertions does not change the execution time of the test. However, re-running the test can increase the overall execution time (as a function of the failure probability).

Results. We evaluate FLEX on a corpus of 35 existing flaky tests collected from the latest versions of 21 projects, which use one of six popular Machine Learning and Probabilistic Programming frameworks: PyTorch [61], TensorFlow [76], TensorFlow-Probability [16], Pyro [7], PyMC3 [71], and NumPyro [57]. The dependent projects provide domain specific functionalities and have a wide user base.

FLEX proposes a fix for 28 tests (Section 7.1). It selected the statistical tail bound strategy in 17 cases, empirical bound strategy in 2 cases, and rerun strategy in 9 cases. For the remaining 7 tests, FLEX determines that the current assertion bound is looser than what FLEX suggests. Hence, we do not propose fixes for those cases, as the flaky failures, if they occur, are statistically rare. We sent 19 pull requests, each fixing one test, to the developers. So far, 9 pull requests have been accepted by the developers, 4 are pending, and 6 have been rejected. Of the 6 rejected pull requests, the developers mostly acknowledged the flakiness and chose to fix the problem in their own way custom to the project. These results jointly demonstrate that our approach can reduce the flakiness of tests by proposing appropriate assertion bounds for pre-specified confidence levels.

Contributions. This paper makes the following contributions:

- We present FLEX, the first technique for automatically fixing tests that are flaky due to algorithmic randomness in ML algorithms.
- We present a novel test fixing algorithm that leverages statistical techniques from Extreme Value Theory to guide several test modification strategies.
- We evaluate FLEX on a corpus of 35 flaky tests, fixing 28 tests while determining that the rest do not need fixes. FLEX is publicly available at https://github.com/uic-arc/flex.

2 EXAMPLE

We present an example flaky test whose assertion is not properly bounded, leading it to pass and fail non-deterministically when run multiple times on the same version of code. The flaky test is named test_ground_truth_separated_modes from icb-dcm/pyPESTO, a library for parameter estimation that provides state-of-art algorithms for optimization and uncertainty analysis of black-box objective functions [65].

Listing 1 presents the (simplified) test code. The test first initializes a sampler using the Adaptive Metropolis Sampling algorithm, which is a Markov Chain Monte Carlo (MCMC) method (Line 2). It initializes a dataset for the test, which is sampled from a mixture of two Gaussian distributions (Line 3). The test then defines the objective function that needs to be optimized. In this case, the objective function measures whether the generated MCMC samples resemble the target mixture distribution using a negative log likelihood metric (not shown here). Then, the test uses the MCMC sampler to find a solution to the problem that uses 1000 iterations for sampling (Line 4). The test compares the results of the sampler with the expected ground truth (Line 8) using the Kolmogorov-Smirnov (KS) test [59], a popular statistical procedure used to find the distance between two probability distributions (lower is better). The test checks whether the KS distance/statistic is below 0.1 (Line 9).

We found that this flaky test fails 17 out of 500 times we run it on the same version of code. Our inspection found that the computed KS statistic varies due to inherent randomness of the code under
test; such variance in computed values is common in machine learning (ML) projects [19]. The source of randomness in this test is in the Adaptive Metropolis Sampling algorithm. The sampling algorithm makes some random choices during its execution such as choosing the next sample (from a distribution) for a parameter that is being estimated. Listing 2 shows the corresponding code snippet. Since the sampler runs for a finite number of steps (1000 in this case), the solution may sometimes be further from the ground truth values than what is expected. As a result, the KS statistic can sometimes exceed 0.1, causing the test to fail.

We collected the actual computed values of the KS statistic at the failing assertion (Line 9) from several test executions. Figure 1 shows the distribution of the collected samples. Clearly, we see that some values exceed the expected bound (0.1) originally set by the developers. We assume the code under test is implemented correctly, so we would then need to repair the test code, providing a more reliable assertion bound to ensure it fails less often due to randomness.

To compute a better assertion bound, we need to examine the tail of this distribution and also provide statistical confidence in our estimation. A naive strategy here might be to use the observed extreme value as the new bound (0.15 here). However, this strategy does not give statistical confidence that the execution will never result in an even more extreme value. Another workaround might be to set the bound to a large value, say 1.0. However, doing so can lead to the test missing bugs which manifest as accuracy regressions. Ideally, we want to determine a value that is both large enough as to not miss bugs and tight enough as to not miss bugs.

We leverage methods from Extreme Value Theory (EVT) to compute a bound with high statistical confidence (Section 3). These methods take as input a set of samples of the observed variable (e.g., statistic) and return a curve representing the tail (left/right) of the distribution. We can then use the tail distribution to estimate the most probable extreme value (max/min) for a pre-specified confidence level. In this example, since we want to find the maximum bound of statistic, we need to inspect its right tail. Using EVT method Peak Over Threshold, we are able to fit an exponential distribution to the tail samples (see Figure 2). We estimate this distribution using only 100 samples collected from executing this test. To check for goodness of fit and confirm that we do not need more samples, we use a sequence of statistical hypothesis tests (GPD test [4, 10]). Using this distribution, we can ultimately determine that the assertion bound should be 0.2, which ensures the computed values will lead to a passing assertion 99.9 percent of the time (the assertion bound is at the 99.9th percentile for the tail distribution). We do not choose the 99.99th percentile (0.3) in this case, since it seems to be too extreme. We sent a pull request that changes the assertion bound to this value to the developers of this project. The developers accepted and merged this pull request, leaving a message: "Thanks for this contribution! I think checking the test percentiles is the way to go indeed" [66]. Further, we also collected 1 million samples for this test and observed that our predicted bound indeed matches this empirical percentile.

An alternative strategy to fix such tests might be to fix the seed in the random number generator(s) (RNG) that are being used, which would make the test execution more deterministic. However, setting the seed can also make the test more brittle: future changes in code under test or the RNG can break the test. Also, it can hide potential bugs since the test will always observe the same set of values from the RNG. In this example, the developers also agreed on this point saying: "I think checking the test percentiles is the way to go indeed (unless we set the RNG, which we however rather don’t want to atm)" [66].

3 BACKGROUND: EXTREME VALUE THEORY

Extreme Value Theory (EVT) encompasses statistical methods that model the probability of extreme events (e.g., those more extreme than any event observed so far). We will next describe EVT and related statistical methods that we use in our approach. We will use the standard notation from the probability theory: X will denote a random variable, \(X_1, \ldots, X_n\) will denote random variables, each representing observed samples of X, and \(F(X \leq x)\) (or equivalently \(F(x)\)) will denote the cumulative distribution function (CDF) of the random variable X. It denotes the probability that the value of X is smaller than a constant x. To make distribution parameters \(\theta\) explicit, we will write \(F(x; \theta)\).

To characterize the probability of extreme events, EVT studies values which are relatively smaller/larger (i.e. belong to the tail

Listing 1: Fix for test in ICB-DCM/pyPESTO

```python
def test_ground_truth_separated_modes():
    sampler = sample.AdaptiveParallelTemperingSampler(internal_sampler=sample.AdaptiveMetropolisSampler(), n_chains=3)
    problem = gaussian_mixture_separated_modes_problem()
    result = sample.sample(problem, n_samples=1000, sampler=sampler, x=np.array([0.]))
    samples = result.sample_result.trace_x[0, :, 0]
    rvs1 = norm.rvs(size=5000, loc=-1., scale=np.sqrt(0.7))
    rvs2 = norm.rvs(size=5000, loc=10., scale=np.sqrt(0.8))
    statistic, pval = ks_2samp(np.concatenate([rvs1, rvs2]), samples)
    assert statistic < 0.1
    assert pval < 0.05
```

Listing 2: Source of randomness for example flaky test

```python

def _propose_parameter(self, x: np.ndarray):
    sampler = sample.AdaptiveParallelTemperingSampler(internal_sampler=sample.AdaptiveMetropolisSampler(), n_chains=3)
    problem = gaussian_mixture_separated_modes_problem()
    result = sample.sample(problem, n_samples=1000, sampler=sampler, x=np.array([0.]))
    samples = result.sample_result.trace_x[0, :, 0]
    rvs1 = norm.rvs(size=5000, loc=-1., scale=np.sqrt(0.7))
    rvs2 = norm.rvs(size=5000, loc=10., scale=np.sqrt(0.8))

    statistic, pval = ks_2samp(np.concatenate([rvs1, rvs2]), samples)
    assert statistic < 0.1
    assert pval < 0.05
```

Figure 1: Distribution of values from example flaky test

Figure 2: Estimated Tail Distribution (Exponential) and corresponding percentile estimates
region) than the rest of the observations in the sample, and uses them to model the tail (right/left) of the distribution.

Peak Over Threshold (POT). For a random variable \(X \), the POT method [64] takes as input a set of independent and identically distributed (i.i.d.) samples: \(X_1, \ldots, X_n \), and outputs a distribution representing the tail of the distribution of \(X \). The POT method uses a user-specified threshold \(T \) to select a subset of samples that exceed the threshold. This threshold helps select values from the tail of the distribution. POT represents the tail of arbitrary continuous distributions using exceedance probability. Given a random variable \(X \), with CDF \(F_X \), we define exceedance probability \(F_T \) as the CDF of \(X \) above threshold \(T \):

\[
F_T(y) = P(X - T \leq y \mid X > T) = \frac{F(T + y) - F(T)}{1 - F(T)}
\]

where \(0 \leq y \leq x_F - T \), where \(x_F \) is the rightmost endpoint of \(F \) or infinity. Prior work [5, 64] showed that for a large class of continuous distributions \(F \) and large \(T \), \(F_T \) can be approximated by a Generalized Pareto Distribution (GPD), i.e., \(F_T(y) \) converges in distribution to \(G(y) \) as \(T \rightarrow \infty \), where

\[
G(y; \theta, \xi) = \begin{cases} 1 - \left(\left(\frac{y + \xi T}{\sigma} \right) \right)^{-1/\xi} & \text{if } \xi \neq 0 \\ 1 - \exp \left(\frac{y - T}{\theta} \right) & \text{if } \xi = 0 \end{cases}
\]

Here, \(\theta \), \(\sigma \), and \(\xi \) correspond to location, scale, and shape, respectively. These parameters can be estimated using Maximum Likelihood Estimation (MLE) methods [53]. The shape parameter, \(\xi \), determines the nature of the tail: light, exponential, or heavy.

Figure 3: Example CDF plots for light, exponential, and heavy tailed GPD distributions with \(\xi = -0.5 \), \(\xi = 0 \), and \(\xi = 0.5 \) respectively (\(\mu = 0 \) and \(\sigma = 10 \)).

Figure 3 presents an example of how different kinds of tail distributions behave. The exponential-tailed distributions and light-tailed distributions (defined as having less probability mass in the tail than exponential) converge very fast and can provide reasonable estimates of the extremes. However, the heavy-tailed distribution (defined as having more probability mass in the tail than exponential) converges very slowly. Computing an assertion bound in a high percentile for such a distribution would result in a very extreme value that may be an impractical assertion bound for a test.

Estimating Parameters of GPD. Given a set of observations \(S = x_1, \ldots, x_n \), the location, scale, and shape parameters of GPD can be estimated using Maximum Likelihood Estimation (MLE) methods. MLE methods compute the point estimate of distribution parameters that maximize the likelihood that distribution produces the observed data. Formally, the likelihood function can be defined as \(L(\theta) = \prod_{i=1}^{n} \mathbb{P}(\theta; x_i) \), where \(\mathbb{P}(\theta; x_i) = \mathbb{P}(x_i \mid \theta) \).

MLE then obtains the parameter estimates that maximize this likelihood:

\[
\hat{\theta} = \arg\max_{\theta} \prod_{i=1}^{n} \mathbb{P}(\theta; x_i).
\]

Intuitively, it selects parameter values such that observed data is most probable. As the number of observations grows, the MLE estimates converge in probability to the true values.

Goodness-of-fit vs. Samples Count. According to POT, the tail distribution is guaranteed to converge to the GPD distribution in the limit [26, 64]. However, it is unknown how many samples may be needed for convergence in practice, especially if the distribution has a heavy tail. The choice of threshold \(T \) determines a trade-off between goodness of fit and minimum samples required for convergence.

Researchers have proposed several heuristics for choosing appropriate thresholds.

In this work, we adopt the methodology proposed by Bader et al. [4] for automated threshold selection using goodness of fit tests. The precise problem can be stated as follows: Given a sequence of samples \(X_1, \ldots, X_n \) of size \(n \), we want to determine the lowest threshold \(T \) such that the GPD fits the exceedances \(Y_i = X_i - T \) adequately. Bader et al. propose using a sequence of goodness of fit tests for the GPD over each candidate threshold in an increasing/decreasing order until the stopping criteria is reached.

For an ordered set of thresholds: \(T_1 < \ldots < T_l \), let there be \(z_i \) exceedances, \(i \in \{1, \ldots, l\} \), for each threshold. The sequence of null hypotheses can be stated as \(H_0^i: \text{The distribution of } Z_i \text{ exceedances above } T_i \text{ follows the GPD}. \) The alternative hypotheses are \(H_1^i: \text{The distribution of } z_i \text{ exceedances above } T_i \text{ does not follow the GPD}. \)

We use the non-parametric Anderson-Darling test [10] (as recommended by Bader et al. [4]) for this hypothesis test. To reduce the chances of choosing the wrong threshold by mistake (also known as False Discovery Rate or FDR), the authors introduce special stopping criteria when evaluating these hypotheses. In particular, we test each threshold, starting from the highest, and stop if the following criteria is satisfied: \(\exp \left(\sum_{i=1}^{l} \log P_j \right) \leq k \) where \(y \) is the False Discovery Rate (probability of choosing a wrong threshold), \(k \in \{1, \ldots, l\} \) is the index of the current threshold, and \(P_j \) is the \(p \)-value returned by the \(j \)th hypothesis test \(H_0^j \). This technique allows for a principled way to select a reliable threshold and check whether a GPD can be fit. When one or more of the hypothesis tests pass based on the stopping criteria, we say that the samples converged to a GPD and choose the lowest threshold for further analysis. If all the hypothesis tests fail, this means that we may need more samples. We abstract this check using StopTest function in our algorithm (Section 4.2).

Box-Cox Transformation. Box-Cox transformation [8] is a power transform that can create a monotonic transformation of data (i.e. preserves the original order of values). This transformation is useful in making the data closer to a normal distribution and stabilizing its variance. Normality is a key assumption in many statistical analyses. Hence, applying the Box-Cox transformation can enable a broader range of analyses on the data. The Box-Cox transformation can be described as follows:

\[
y_i^{(\lambda)} = \begin{cases} \frac{y_i^{\gamma - 1}}{\lambda} & \lambda \neq 0; \\ \log y_i & \lambda = 0; \end{cases}
\]

where \(\lambda \) is a parameter that can be estimated from the samples using MLE methods. It can only be applied when \(y_i > 0, i \in \{1, \ldots, n\} \).
We propose FLEX, a technique for fixing flaky tests caused by inher-
tant randomness in ML projects. FLEX assumes that the code under test is implemented correctly and thus considers tests that fail some of the time to be flaky and in need of repair. Given an assertion in a test of the form assert \(X < a \), FLEX performs the following steps: 1) Collect and pre-process the samples \(X_1, \ldots, X_n \) of actual value \(X \) from several test executions, 2) Determine the lowest possible threshold \(T \) such that a GPD, \(G_X \), can be fit to \(Y_i = X_i - t, i \in \{1, \ldots, n\} \), with a confidence of at least 95% using the Goodness-of-fit approach described in Section 3, 3) Estimate the most probable bound \(B \) from \(G_X \) for \(X \), based on the desired confidence level \(C \in (0, 1) \), as provided by the developer, and update the assertion bound to \(B \). For instance, if \(C = 0.99 \) then we determine \(B \) such that \(P(X \leq B) \geq 0.99 \).

4 FLEX

We propose FLEX, a technique for fixing flaky tests caused by inherent algorithmic randomness in ML projects. FLEX assumes that the code under test is implemented correctly and thus considers tests that fail some of the time to be flaky and in need of repair. Given an assertion in a test of the form assert \(X < a \), FLEX performs the following steps: 1) Collect and pre-process the samples \(X_1, \ldots, X_n \) of actual value \(X \) from several test executions, 2) Determine the lowest possible threshold \(T \) such that a GPD, \(G_X \), can be fit to \(Y_i = X_i - t, i \in \{1, \ldots, n\} \), with a confidence of at least 95% using the Goodness-of-fit approach described in Section 3, 3) Estimate the most probable bound \(B \) from \(G_X \) for \(X \), based on the desired confidence level \(C \in (0, 1) \), as provided by the developer, and update the assertion bound to \(B \). For instance, if \(C = 0.99 \) then we determine \(B \) such that \(P(X \leq B) \geq 0.99 \).

4.1 FLEX Algorithm

Algorithm 1 describes the main FLEX algorithm. It takes a test \(T \), an assertion \(A \) in the test, and a confidence threshold \(C \) as input and returns the fixed version(s) of the test \(T^* \) as output. Intuitively, the algorithm executes \(T^* \) several times and collects the samples from the values being compared in the assertion until either the tail distribution converges to a light or exponential tail or the number of samples collected exceeds the maximum sampling limit (MAX_SAMPLES) and therefore we consider to not converge.

In each iteration of the loop (Lines 7-18), we execute the test \(N \) times and collect samples from the assertion (Line 8). We add the new samples to the existing set, \(S \), and check if the tail distribution converges to a light or exponential tail (Lines 9-10). The estimation algorithm \(TailBoundEstimator \) (Section 4.2) takes the samples \(S \), an assertion \(A \), a flag \(F \) to enable/disable the Box-Cox transformation (Section 3), and a confidence level \(C \) as inputs. When a distribution has a light or exponential tail, the distribution has a finite bound and hence can be used to fix the test assertion. On the other hand, if the distribution does not converge or has a heavy tail, we might need more samples to get a better estimate. If we fail to get a bound, then we try to get an estimate by enabling the Box-Cox transformation (Line 12). We choose to check convergence first without transforming because the transformation adds extra overhead. Note that Box-Cox can be applied only on positive data. If all the samples are negative, then we change the sign of the values before the analysis and revert the sign of the results if the analysis succeeds. However, if we have a mix of positive and negative values, we do not apply this transformation.

We continue the loop until the sample size exceeds a user-set limit MAX_SAMPLES or if the tail converges to light to exponential distribution (Lines 14-16). Finally, FLEX patches the test using different available fix strategies depending on whether it finds a finite bound or not (Section 5) and returns the patched test (Line 19).

4.2 Estimating the Statistical Tail Bound

Given a set of samples collected from test executions, the tail estimation algorithm applies the Peak Over Thresholds (POT) method to select values from the tail of the distribution (based on a threshold) and check if they converge to a tail distribution (which belongs to the Generalized Pareto Distribution (GPD)). However, selecting an appropriate threshold is non-trivial and can affect convergence. In this work, we use an automatic threshold selection technique [4] to compare different threshold choices (discussed in Section 3, Goodness-of-fit) and choose the lowest threshold that passes the GPD test [10], meaning it fits adequately to a GPD distribution.

Algorithm 2 shows the tail bound estimation algorithm, \(TailBoundEstimator \). The algorithm takes as input a set of samples \(S \), an assertion \(A \), a flag \(F \) on whether or not to enable the Box-Cox transformation, and a confidence level \(C \) for choosing the bound. For the threshold that the POT method needs, we iterate over a set of possible, user-defined thresholds \(M \) (Line 5). Any value exceeding a threshold is considered to be part of the tail of the distribution and is used to fit to a distribution that helps compute the bound. For each threshold \(t \), we compute the exceedances (Line 11). We apply the GPD test for convergence and compute the \(p \)-value \(p \). We also obtain the shape (Light/Exp/Heavy) and specification of the distribution \(D \) if it converges (Line 15). If the GPD test succeeds (i.e., \(p > SIGNIFICANCE_LEVEL \)), and we obtain a light or exponential distribution (Line 20), then we estimate the bound \(B \) by computing the extreme percentile \(\bar{Q}_C \) for the distribution such as 99th or 99.99th (Line 21). If the Box-Cox transformation is enabled, the ComputePerc method also transforms the bound back to the original scale of the samples. If we obtain a mildly heavy tail (e.g., \(0 < \xi < \epsilon \), for some small \(\epsilon \)), we can still approximate it using an exponential distribution in some cases. We use the Likelihood Ratio
We describe details on how we implement the main components.

Algorithm 2 Tail Bound Estimation Algorithm

Input: Samples S, Assertion A,Enable Transformation F, Confidence level C
Output: Convergence result Conv, GPD distribution D, Bound B

1. procedure TailBoundEstimator(S, A, F, C)
2. if F then
3. S ← Transform(S)
4. end if
5. M ← GetThresholds(S)
6. D ← ∅
7. B ← ∞
8. Conv ← False
9. P ← ∅
10. for t ∈ SortedDescending(M) do
11. exc ← {x − t|x > t, x ∈ S} ▷ POT method
12. if |exc| < MIN_TAIL_SAMPLES then
13. continue
14. end if
15. p ← GPDFit(exc) ▷ Convergence Test
16. P ← P ∪ p
17. if p > SIGNIFICANCE_LEVEL then ▷ Check if converged
18. D ← FitWithLRT(D)
19. Conv ← True
20. end if
21. if isLightOrExp(D) then
22. B ← ComputePer(D, C, t, F) ▷ Find new bound
23. end if
24. else
25. D′ ← FitWithLRT(D) ▷ Approximate to exponential
26. if D′ ≧ 1 then
27. B ← ComputePer(D′, C, t, F)
28. end if
29. end else
30. if StopTest(P) then ▷ Stopping criteria for hypothesis test
31. break
32. end if
33. end for
34. return Conv, D, B
35. end procedure

Tail Bound Estimator. It implements the algorithm described in Section 4.2 to 1) check whether the tail distribution has converged and 2) to estimate an appropriate bound for the assertion A if the distribution converged and has a light or exponential tail. We use the “Eva” package in R [23] for the GPD test. We use the Box-Cox implementation in scipy to transform (or inverse transform) the samples. We choose the common significance level of 0.05 for the GPD test. For StopTest check, we use the false discovery rate (τ) of 0.05.

Patch. The Patch module takes a test T, assertion A in the test, all collected samples S, fitted GPD D, and the proposed bound B as input and provides one or more fixed version(s) of the test as output. If B is not infinity, it updates the assertion in the test accordingly (Section 5.5) and returns the patched test to the caller. Otherwise, it may also propose other fixes for the test. We discuss each fix strategy in Section 5.

5 Test Fixing Strategies

FLEX provides three different strategies for automatically fixing and updating a flaky test depending on whether a finite tail bound can be computed using EVT and the nature of the assertion (Sections 5.1-5.3). FLEX may also choose not to fix a test (Section 5.4) when it deems that the original bound is already looser than our proposed bound (indicating that failures are statistically rare). When multiple fixes are proposed by FLEX, we first we fix a test using the statistical bound when available. Otherwise, we use the empirical bound for the fix. If the estimated confidence interval for the empirical bound is too high, we choose to re-run the test instead. We may also need to adapt our strategy based on the context, (see Section 6.3).

5.1 Using the Statistical Tail Bound (SB)

If we obtain a light or exponential tailed distribution using Algorithm 2, then the distribution has a finite bound. We then simply compute the extreme percentiles (e.g., $Q_{0.99}$ or $Q_{0.9999}$), based on developer specified threshold C, to find a value that is higher (or lower) than the original bound used in the assertion and update the assertion with the new bound. The fixed assertion then has a failure probability of approximately $1 - C$.

5.2 Using the Empirical Bound (EB)

If the tail bound estimation algorithm (Algorithm 2) fails to converge or provide a finite bound (a heavy tail distribution), FLEX estimates an empirical bound from the observed executions. FLEX uses bootstrap sampling [22] to re-sample (with replacement) several times from the available samples and compute the extreme (max/min) from each instance of re-sampled data. As a result, FLEX obtains the set of sample extremes, E, and returns user-specified statistic of this set (e.g., $Q_{x}(E)$, mean, or median) as the new empirical bound. FLEX also computes the 95% confidence interval ($(Q_{0.025}(E) - Q_{0.975}(E))$) which denotes the variability in the empirical bound – a smaller confidence interval indicates the empirical bound is close to the true bound.

5.3 Re-Running the Test (RR)

The Flaky [25] plugin for pytest allows the developers to automatically re-run the test on failure. To use this plugin, a developer needs...
to annotate the test using @Faky. This plugin also allows additional parameters: max_runs (default 2) and min_passes (default 1). The plugin runs the test up to max_runs times until it passes min_passes times. FLEX can annotate the test based on its observed failure rate during its analysis, i.e., re-using the observed executions at the end of Algorithm 1. FLEX computes the number of re-runs in the following two ways: 1) FLEX computes the empirical failure probability of the test: \(p = \frac{\text{failures}}{\text{runs}} \). Then it computes the number of re-runs using: \(n = \frac{\log(1 - C)/\log p}{C} \), where \(C \) is the developer provided confidence level (as in Algorithm 1) for minimum passing probability. 2) If the distribution converges to a heavy tail, we can also compute the probability that a sample exceeds the current bound set in the assertion. For instance, let \(D \) be the tail distribution (GPD) returned by Algorithm 2 and \(\alpha \) be the current bound used in the test. Then, we can compute \(P(x \geq \alpha) = 1 - D(\alpha) \), which is the failure probability of the assertion. We can then compute the re-runs similar to the previous case using this probability.

Unlike other approaches, re-running may increase the average running time of the test. Specifically, if the run time of the test is \(W \), the expected run time of the test will be \(\sum_{k=1}^{n} p^{k-1} \cdot (1 - p) \cdot k \cdot W \).

5.4 Not Fixing a Test (NF)

In some cases, FLEX may propose a bound that is very close to, or tighter than the original bound, indicating that the assertion bounds are already conservative. This case indicates that test failures, if they occur, are extremely rare events. As such, we report, but do not propose the fix to the developers.

5.5 Updating Assertions

We describe how FLEX updates an assertion when a statistical or empirical bound for an assertion can be computed.

Assertions comparing absolute values. This category includes assertions that either compare with a computed value or with a constant. Some examples include the Python assert statement: assert \(| x | < 1 \) or \(x = 0 \) and some other APIs in unittest (e.g., assertGreater(x, a), assertLess(x, a)) and numpy (e.g., assert_array_less(x, a)). To fix an assertion, FLEX simply replaces \(\alpha \) with the bound it computes. Listing 3 shows an example of such a fix from the ICB-DCM/pyPESTO project.

```python
# Listing 3: Fix for test in ICB-DCM/pyPESTO
-assert statistic < 0.1
+assert statistic < 0.2
```

Assertions using tolerance thresholds. Some assertions check whether the relative or absolute difference between two floating-point values is less than a threshold. Some examples include numpy APIs such as: assert_almost_equal(a, b, decimal = C), and also assert_allclose(a, b, rtol = C1, atol = C2), where \(C, C_1, \) and \(C_2 \) are the relative and absolute thresholds respectively. In these cases, FLEX collects the values of both \(a \) and \(b \) from test executions and computes the absolute or relative difference from each execution. FLEX estimates the tail distribution using these differences as samples. It updates the assertion to either use a lower tolerance threshold or reduce the decimal places being compared depending on the kind of assertion. Listing 4 shows an example from the microsoft/hummingbird project for absolute tolerance fix.

```bash
-assert_allclose(model.predict(X), torch_model.predict(X), rtol=1e-4, atol=1e-5)
+assert_allclose(model.predict(X), torch_model.predict(X), rtol=1e-4, atol=1e-4)
```

6 METHODOLOGY

6.1 Projects and Flaky Tests

We follow a similar methodology as Dutta et al. [19] to select machine learning projects for our evaluation. We start with two popular machine learning libraries (PyTorch [61] and TensorFlow [76]) and four probabilistic programming systems (Pyro [7], NumPyro [57], TensorFlow-Probability [16], and PyMC3 [71]) on GitHub. We use GitHub’s feature to track the projects dependent on these libraries and also have more than 10 stars, as an indication of popularity.

<table>
<thead>
<tr>
<th>Project</th>
<th>Dependent</th>
<th>Filtered</th>
</tr>
</thead>
<tbody>
<tr>
<td>TensorFlow</td>
<td>836</td>
<td>100</td>
</tr>
<tr>
<td>PyTorch</td>
<td>906</td>
<td>100</td>
</tr>
<tr>
<td>TensorFlow-Prob</td>
<td>283</td>
<td>100</td>
</tr>
<tr>
<td>NumPyro</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pyro</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>PyMC3</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>2072</td>
<td>347</td>
</tr>
<tr>
<td>Unique</td>
<td>1836</td>
<td>305</td>
</tr>
<tr>
<td>Successful at Testing</td>
<td>-</td>
<td>144</td>
</tr>
<tr>
<td>Projects with Flaky Tests</td>
<td>-</td>
<td>21</td>
</tr>
</tbody>
</table>

Some of these core libraries can have hundreds of dependents, so we only select the top 100 dependent projects per library for our study. Table 1 shows all the project details. Overall, we select 305 unique projects. We develop a general installation script to install these libraries, which creates a virtual python environment using Anaconda [1], and then it installs the library and all its dependencies in the environment along with some libraries for testing, such as pytest. In Python libraries, developers typically specify all dependencies in the setup.py file, which is the main installation module. They can also specify additional dependencies (e.g., for building documentation and testing) in a requirements.txt file. However, in some cases, the installation process may not work due to incomplete dependency specifications, missing system dependencies (such as SQL server client or open-mpi library), or required specialized build/testing systems (such as Bazel [6]). Our installation script installs a general set of system dependencies but relies on pip and pytest to build and test the libraries. Overall, we are able to successfully install and test 144 projects.

Of the resulting 144 projects, we ran their tests using FLEX’s Test Runner module, running only the tests with approximate assertions that we support. Initially, we run each test up to 30 times while...
recording the actual computed values in each assertion using Test Runner’s instrumentation. If any assertion’s actual values remain exactly the same for all those initial runs, we discard those tests from consideration. For the remaining tests with assertions whose actual values vary, we run those tests 500 times while recording test results (success/failure) from each run. If we detect any failures (and at least some passing runs as well), we mark the test as flaky and use it for our evaluation. Ultimately, we are left with 21 projects with 35 flaky tests as part of our evaluation. Recall, FLEX assumes that the underlying distribution is continuous. We also included 7 tests with discrete distributions, mainly resembling binomial distribution (that can be often approximated well with a continuous distribution).

6.2 FLEX Configuration

For our evaluation, we configure FLEX to first collect an initial 100 samples (INITIAL_SAMPLE_SIZE from Algorithm 1). If more samples are needed, we configure FLEX to collect more samples in batches of 50 (NEXT_SAMPLE_SIZE in Algorithm 1). We specify FLEX to collect at most 3000 samples before stopping (MAX_SAMPLES in Algorithm 1).

We set the minimum number of tail samples when testing for convergence to be 50 (MIN_TAIL_SAMPLES in Algorithm 2). We use SIGNIFICANCE_LEVEL of 0.05 for the GPD tests. For the confidence level (C in Algorithm 1), we configure FLEX to use 90th, 95th, 99th, 99.9th and 99.99th percentiles.

We run all experiments on Azure VMs (Standard_F32s_v2 configuration) with 3.4GHz Xeon processor with 32 cores and 64GB memory. While executing the tests, we run 20 threads in parallel as to speed up experiments.

6.3 Reporting to Developers

For each fix we obtain from running FLEX on a flaky test, we prepare a pull request to send to the developers. In the process of preparing the pull request, we manually inspect the proposed fix(es) and the surrounding context in the test as to determine if the fix seems reasonable. For example, if the assertion initially checks if some count of values is greater than zero, and the fix is to change that assertion bound to instead be a negative number, then the fix does not make sense in the context of this test. We select one of the other available fixes in such a case (Section 6.1).

For each project in our evaluation, we first send a pull request for fixing one test. We initially send just one pull request as to not bother developers immediately with many pull requests if they are not willing to consider such changes. If the developers accept the initial pull request, we send pull requests for fixing the remaining flaky tests. We ensure every pull request we send only addresses one flaky test at a time. As part of a pull request, we provide both the proposed fix and the statistical evidence we gathered by running FLEX on the test. We present to developers information on the number of times the assertion failed out of how many reruns, and we explain how the tail distribution was computed using the actual values from test executions. We suggest the bounds at either 99.9th or 99.99th percentile (depending on the test), but for completeness we also provide the values for the other percentiles (including also 90th, 95th, and 99th percentiles). If the developer chooses one of these bounds, we adjust the pull request accordingly.

7 EVALUATION

In this section, we address the following research questions:

RQ1: How many flaky tests can FLEX fix? Which fix strategy does it apply in each case? How many test runs does it need in each case?

RQ2: How do the different fix strategies compare and in what scenarios can each be applied?

RQ3: How do developers respond to the fixes?

7.1 Flaky Tests Fixed by FLEX

We run FLEX on the 35 flaky tests found in the latest versions of 21 projects from Section 6.1. Table 2 presents the results. Each row represents one flaky test. Column ID is a shorthand identifier we give to each test for later reference. Project presents the name of the project as a GitHub SLUG. Test presents the name of the test, SHA presents the commit SHA of the project that we ran FLEX on, #Samples presents the number of samples FLEX collected for its analysis, Conv. presents whether the tail distribution converged (Algorithm 1). ✓ means yes, ✗ means no, and L/E presents whether the distribution had a light or exponential tail, when it converges ✓ means yes, ✗ means no, - means not applicable).

For the final four columns under Fixed, we mark with ✓ the type of fix that FLEX proposed for the test. The column SB means the test was fixed using a statistical bound estimated using the light or exponential tail distribution computed using POT. EB means the empirical bound strategy is used. RR means re-run strategy is used. By default, FLEX prioritizes the fixes SB>EB>RR (Section 5), but adjusts the recommendations based on the context of the test (Section 6.3). NF means that flaky test was not fixed, because FLEX’s proposed new assertion bound is tighter than the original (Section 5.4). As such, these tests would be considered tolerant enough already, so FLEX’s proposed assertion bound fix would not make sense. In sum, FLEX proposes a fix for 28 flaky tests (SB, EB, RR), while 7 remain not fixed (NF). We compare the fix strategies in Section 7.2.

Overall, for 17 tests, FLEX requires only 100 samples (the minimum that we collect) for convergence, showing that our analysis is efficient in most cases. Only for 2 tests does FLEX require more than 1000 samples for convergence. We apply the GPD test to check if we have enough samples to reliably estimate the tail distribution. This gives us statistical confidence in our results. Further, by considering different thresholds for selecting the tail values, we ensure that we can select as many samples from the tail of the distribution for the best possible result. For the remaining 7 tests, which FLEX chooses not to fix, the proposed bound was tighter than original bound. The Box-Cox transformation helped in early convergence and bound estimation for 8 cases: T1, T5, T14, T17, T21, T22, T32, and T34.

7.2 Comparison of Fix Strategies

Out of 28 fixed tests, FLEX proposes the statistical bound for 17 tests, empirical bound for 2 tests, and the re-running strategy for 9 tests. In cases where FLEX suggests multiple fixes, we manually inspect and select the most appropriate fix based on the context. We next discuss in which scenarios each fix might work.

We observe that FLEX’s statistical tail analysis converges for 31 tests, out of which we obtain a light or exponential tail for 30 tests.
and a heavy tail for one test. For 4 tests where the analysis does not converge, even applying the Box-Cox transformation does not aid the analysis. These scenarios occur either because either there are very few samples in the tail region or the samples only consist of very few discrete values.

In some cases, the variable in the assertion of a test might have a known hard bound such as \(\sigma swath length \) that are lower bounded by zero (e.g., \(\text{assert} \ \text{(np.count_nonzero(scores) > 0)} \) from `deepchem/deepchem`). This assertion sometimes fails when the count is zero. Hence, this case also does not satisfy FLEX’s requirement of the samples belonging to a continuous distribution. However, this information is not easily interpretable just from the samples that FLEX’s analysis collects. In such cases, FLEX may sometimes propose a negative assertion bound (using the inferred tail distribution), which is an impractical fix. Further, updating the assertion to check for \(\geq 0 \) also does not make sense. In these cases, re-running the test is the only reasonable fix that FLEX can propose.

We propose the empirical bound fix strategy when we have a large set of samples and can estimate a bound with high confidence (i.e., small confidence interval). This strategy is useful in scenarios where the tail analysis fails to converge, and the quantity of interest does not have a known hard bound (like the previous example). For instance, in the `microsoft/hummingbird` project, the test `test_tree_regressors_multiooutput_regression` contains a flaky assertion:

```python
assert_allclose(model.predict(x), torch_model.predict(X), rtol=1e-05, atol=1e-05)
```

FLEX tracks the maximum absolute difference between the values being compared and obtains an empirical bound of \(3.27 \pm 0.96 \). This bound is evidently much higher than the absolute tolerance specified in the test \((10^{-5}) \). FLEX suggested a fix using this bound to the developers. In this case, however, developers found an actual bug in their code which was causing such erroneous executions.

7.3 Developer Response to FLEX’s Fixes

Using our methodology for sending pull requests to developers (Section 6.3), we ultimately sent 19 pull requests for tests for which FLEX proposes a fix. Table 3 presents the status of our pull requests per project, representing the 28 tests that FLEX can fix. Column A means number of pull requests accepted, P means number pending, R means number rejected, and U means number unsubmitted (we are waiting initial response from the developer on our first sent pull request). For `pymc-learn/pymc-learn`, we do not send a pull request since the project has been inactive for the last two years. The total number of pull requests (under column PRs) matches the number of tests for which we sent fixes.

Table 2: Results of running FLEX on 35 flaky tests

<table>
<thead>
<tr>
<th>ID</th>
<th>GitHub Project</th>
<th>Test</th>
<th>SHA</th>
<th>#Samples</th>
<th>Conv.</th>
<th>L/E</th>
<th>Fix Type</th>
<th>SB</th>
<th>EB</th>
<th>RR</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>microsoft/coax</td>
<td>test_update</td>
<td>57c3e6</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T2</td>
<td>deepchem/deepchem</td>
<td>test_in_silico_mutagenesis_nonzero</td>
<td>6a535b</td>
<td>3000</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T3</td>
<td>deepchem/deepchem</td>
<td>test_uncertainty</td>
<td>6a535b</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T4</td>
<td>deepchem/deepchem</td>
<td>test_restore_equivalency</td>
<td>6a535b</td>
<td>3000</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T5</td>
<td>deepchem/deepchem</td>
<td>test_int_sequence</td>
<td>6a535b</td>
<td>450</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T6</td>
<td>fastnlp/fastNLP</td>
<td>test_ConstantTokenNumSampler</td>
<td>22bc66</td>
<td>150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T7</td>
<td>rworkgroup/garage</td>
<td>test_update_envs_env_update</td>
<td>1f1742</td>
<td>150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T8</td>
<td>RaRe-Technologies/gensim</td>
<td>test_cbow_hs_training_fromfile</td>
<td>cf9e9</td>
<td>250</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T9</td>
<td>RaRe-Technologies/gensim</td>
<td>test_cbow_neg_training_fromfile</td>
<td>cf9e9</td>
<td>650</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T10</td>
<td>RaRe-Technologies/gensim</td>
<td>test_sg_hs_training_fromfile</td>
<td>cf9e9</td>
<td>400</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T11</td>
<td>RaRe-Technologies/gensim</td>
<td>test_sg_neg_training_fromfile</td>
<td>cf9e9</td>
<td>650</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T12</td>
<td>microsoft/hummingbird</td>
<td>test_tree_regressors_multiooutput_regression</td>
<td>971c2</td>
<td>3000</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T13</td>
<td>microsoft/hummingbird</td>
<td>test_sklearn_multiooutput_regressor</td>
<td>971c2</td>
<td>200</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T14</td>
<td>microsoft/hummingbird</td>
<td>test_sklearn_regressor_chain</td>
<td>971c2</td>
<td>1050</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T15</td>
<td>kornia/kornia</td>
<td>test_two_view</td>
<td>c8be85</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T16</td>
<td>magenta/magenta</td>
<td>testStartCapture_Callback_Period</td>
<td>b4b9af</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T17</td>
<td>magenta/magenta</td>
<td>testWaitForEvent_Signal</td>
<td>b4b9af</td>
<td>400</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T18</td>
<td>plasticityai/magnitude</td>
<td>test_augmented_lstm Computes_same_function_as_pytorch_lstm</td>
<td>7ac0ba</td>
<td>3000</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T19</td>
<td>plasticityai/magnitude</td>
<td>test_scalar_mix_layer_norm</td>
<td>7ac0ba</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T20</td>
<td>plasticityai/magnitude</td>
<td>test_multi_head_self_attention_respects_masking</td>
<td>7ac0ba</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T21</td>
<td>IntelLabs/nlp-architect</td>
<td>test_lcn_adding</td>
<td>72be21</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T22</td>
<td>facebookresearch/purlarai</td>
<td>test_stochastic</td>
<td>f8c5c2</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T23</td>
<td>pgunpy/pgunpy</td>
<td>test_fit</td>
<td>413c61</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T24</td>
<td>pymc-learn/pymc-learn</td>
<td>test_advi_fit_returns_correct_model</td>
<td>4f1e9</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T25</td>
<td>pymc-learn/pymc-learn</td>
<td>test_advi_fit_returns_correct_model</td>
<td>4f1e9</td>
<td>3000</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T26</td>
<td>ICR-DCM/pyFESTO</td>
<td>test ground_truth_separated_modes</td>
<td>a36d08</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T27</td>
<td>tristandeleu/pytorch-meta</td>
<td>test_matching_log_probs</td>
<td>389e35</td>
<td>200</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T28</td>
<td>refnx/refnx</td>
<td>test_all_minimizers</td>
<td>3e369</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T29</td>
<td>stellargraph/stellargraph</td>
<td>test_poincare_ball_distance_self</td>
<td>1e120</td>
<td>150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T30</td>
<td>WilliamFiks/ffausalimpact</td>
<td>test_default_model_sparse_linear_regression arma_data</td>
<td>96e98</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T31</td>
<td>google/trax</td>
<td>test_value_error_high_without_syncs</td>
<td>beaca3</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T32</td>
<td>lmicnnes/unmap</td>
<td>test_aligned_update</td>
<td>65840e</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T33</td>
<td>lmicnnes/unmap</td>
<td>test_neighbor_local_neighbor_accuracy</td>
<td>65840e</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T34</td>
<td>zfit/zfit</td>
<td>test_onedim_sampling</td>
<td>a79e9</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T35</td>
<td>zfit/zfit</td>
<td>test_sampling</td>
<td>a79e9</td>
<td>100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| Σ | 21 | 35 | 614.29 | 31 | 30 | 17 | 2 | 9 | 7 |
So far, developers accepted 9 pull requests. 4 pull requests are still pending developer response, and 6 pull requests are rejected. For most of our pull requests, we selected the estimate based on the 99.99th percentile as the new bound of the test. In some cases we use a different percentile after discussion with developers, and we provide the estimates for the other percentiles (Section 6.3).

Listing 5 shows an example of a fix for a test in *zfit/zfit*. For this test, FLEX estimates the extreme percentiles as follows: 90th: 10^{-5}, 95th: 10^{-6}, 99th: 10^{-7}, and 99.99th: 10^{-8}. The original bound is 10^{-6} (shown in red). Initially, we submitted the pull request with the 99.99th percentile as the fix (shown in blue). However, the developers suggested they would prefer the 99th percentile (shown in green) to reduce the flakiness to some extent (compared to the current rate) for now and would later like to investigate into why the computed values are so low.

<table>
<thead>
<tr>
<th>Project</th>
<th>Tests</th>
<th>PRs</th>
<th>A</th>
<th>P</th>
<th>R</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>cox-dev/coax[11]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>deepchem/deepchem[15]</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>fastnlp/fastNLP[24]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>rtwtoolbox/garage[28]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RaRe-Technologies/gensim[29]</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>microsoft/hummingbird[40–41]</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>plasticityai/magnitude[50]</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IntelLab/nlp-architect[55]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>microsoft/hummingbird[56]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pygsp/pygspmp[62]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICB-DCM/pyPSTO[66]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pymc-learn/pymc-team</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tristandeleu/pytorch-meta[69]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>refnx/refnx[70]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>stellargraph/stellargraph[75]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lmcinnes/unmap[78]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>zfit/zfit[82, 83]</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Σ 28 19 9 4 6 9

8 THREATS TO VALIDITY

The projects we use in our evaluation are only a subset of all machine learning applications. We selected these projects by starting with the most popular machine learning libraries and finding their dependent projects. We believe these projects are representative. We also focus on flaky tests that use approximate assertions, found to be a common type of flaky test from prior work [19]. We detect the flaky tests in these projects through repeated reruns. We use a similar rerun strategy to detect these flaky tests as prior work [19]. The flaky tests we use are then a lower-bound on the total number of flaky tests, as other flaky tests may require even more reruns to observe some failures. Such tests have a higher chance of flakiness and hence are likely the ones that developers would want to focus on.

Since FLEX builds on several statistical methods and heuristics, there is a possibility of estimating incorrect bounds. As a result we may sometimes over-estimate the bound which may cause the tests to miss some bugs. We minimize this risk by using high significance levels both for individual hypothesis tests and for the algorithm for threshold selection. To increase confidence in the ability of the fixed test one can use strategies from the literature, e.g. [18]. Like other prior work on repairing flaky tests [12, 13, 47, 52, 81], we assume code under test to be correct, from the literature, e.g. [18]. Like other prior work on repairing flaky tests, we use a similar rerun strategy to detect these flaky tests as prior work [19]. These positive responses show a practical value of FLEX's systematic approach for determining assertion bounds.

9 RELATED WORK

Flaky Tests. Luo et al. [49] performed the first empirical study on flaky tests, studying open-source projects and determining common root causes for flaky tests. Later work would build upon Luo et al.'s findings, developing techniques to detect specific flaky tests with root causes found from their study, such as due to test-order dependencies [27, 46], asynchronous waits [44], or unordered collections [73]. However, these prior works focused on flaky tests in traditional software.

Dutta et al. [17] performed an empirical study to find common root causes for flaky tests in ML applications. They found that a common cause for flakiness in this domain is algorithmic randomness (e.g., calls to random number generators), both in the application code and the tests. Leveraging these insights, they developed FLASH [17] to detect such flaky tests using convergence testing. Their work shows how to fix such flaky tests using EVT and statistical hypothesis tests to update approximate assertion bounds.
Flaky Test Repair. Prior work on test repair generally involves updating assertions after code under test has evolved [12, 13, 47, 52, 81]. The assumption is that the code under test is correct and so test assertions need to match the current implementation. We also make this assumption in our work and propose a technique for adjusting assertions that better match the underlying implementation while reducing flakiness. Recently, there has been work on repairing specific types of flaky tests, such as flaky tests due to test-order dependencies [74] or due to unordered collections [84]. The goal of these techniques is to make flaky tests no longer fail due to their flakiness root cause. Lam et al. [45] proposed mitigating flakiness due to asynchronous waits by automatically adjusting wait times as to reduce the chance of tests failing due to waits. We also focus on fixing flaky tests by adjusting assertion bounds, reducing the chance of a flaky test (though not completely eliminating it). We focus on flaky tests with approximate assertions that can fail due to inherent randomness in executing code under test.

Extreme Value Theory (EVT). We rely on EVT [14, 26, 64] to determine tail distributions of the computed values in approximate assertions. While we rely on the Peak Over Threshold (POT) [64] method to apply EVT, there are other popular methods as well. Block Maxima Method (BMM) [14] uses a given block size B (selected by user) to split the given samples into equally sized blocks and then considers the maximum value in each block. According to the Fisher-Tippet theorem [26], this distribution is then guaranteed to converge to a Generalized Extreme Value distribution. The choice of block size B is often not intuitive and can affect the convergence of the distribution. This method is generally better suited for data with some periodicity, e.g., daily/month weather data/finance data. In our case, the values in the assertions do not exhibit any such periodicity in general, which makes this method less effective. The POT method, on the other hand, considers exceedances over some threshold T (selected by the user). These exceedance values from the samples then converge to a Generalized Pareto Distribution (GPD) [64]. This method is better suited to our use case.

Testing of Programs in Presence of Randomness. Machine learning frameworks like TensorFlow [76] and PyTorch [61] have led to a surge in machine learning based applications. Probabilistic programming has also been gaining in popularity in recent years, leading to the development of numerous probabilistic programming languages [9, 32, 67]. Researchers proposed techniques for testing and debugging probabilistic systems [17, 20, 48], machine learning frameworks [21, 35, 37, 63, 85], and randomized algorithms [42] to complement manual test writing. Researchers have also explored techniques for testing randomized or adaptive software [2, 3, 51, 72] or analyzing robustness of programs [38, 56, 79, 80]. However, the advances in efficient automated test generation for these systems has yet to catch up with the speed of application development while capturing the inherent non-determinism and overcoming the lack of reliable oracles in this domain.

10 CONCLUSION

We present FLEX, the first tool for automatically fixing tests from machine learning (ML) projects that are flaky due to algorithmic randomness. FLEX analyzes and transforms tests that use approximate assertions to compare actual and expected values that represent the quality of ML results. We leverage statistical methods from Extreme Value Theory to determine the appropriate assertion bounds as to reduce the chance of flaky test failures. We evaluate FLEX on a corpus of 35 tests collected from the latest versions of 21 ML projects. Overall, FLEX identifies and proposes a fix for 28 tests. We sent 19 pull requests, each fixing one test, to the developers. So far, 9 have been accepted by developers. We envision that many future applications will continue to incorporate a degree of randomness. Our goal is to help developers cope with randomness and overcome the lack of reliable testing oracles both in ML and other domains.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable feedback for improving the paper. This work was supported in part by NSF, Grants No. CCF-1846354, CCF-1956374, CCF-2008883, CCF-2028861, Microsoft Azure, and Facebook PhD Fellowship.

REFERENCES

[33] Christian Gourieroux, Alberto Holly, and Alain Monfort. 1982. Likelihood ratio sensitivity analysis for probabilistic programs. In FoSE.

[37] Christian Gourieroux, Alberto Holly, and Alain Monfort. 1982. Likelihood ratio sensitivity analysis for probabilistic programs. In FoSE.

[41] Christian Gourieroux, Alberto Holly, and Alain Monfort. 1982. Likelihood ratio sensitivity analysis for probabilistic programs. In FoSE.

