
Toward Continuous Verification of DNNs

Shubham Ugare 1 Debangshu Banerjee 1 Tarun Suresh 1 Sasa Misailovic 1 Gagandeep Singh 1 2

Abstract
Deep neural network (DNN) verification is used
to assess whether a DNN meets a desired trust-
worthy property (e.g., robustness, fairness) on an
infinite input set. While there have been signifi-
cant advancements in scalable verifiers for indi-
vidual DNNs, they suffer from inefficiency when
developers update a deployed DNN (e.g. through
quantization, pruning, or fine-tuning) to enhance
its inference speed or accuracy. The verification
is inefficient because the developers need to re-
run the computationally expensive verifier from
scratch on the updated DNN. To address this is-
sue, we propose an incremental DNN verification
framework, leveraging novel theory, data struc-
tures, and algorithms. Our previous works Ugare
et al. (2023a) and Ugare et al. (2022) focused
on incremental verification, and in this paper, we
provide a summary of these advancements and
explore the potential of incremental verification
in enabling real-world DNN verification systems.

1. Introduction
Deep neural networks (DNNs) are increasingly being used
in safety-critical applications, such as autonomous driving
(Bojarski et al., 2016), healthcare (Amato et al., 2013), and
aviation (Julian et al., 2018). However, DNNs are vulner-
able to adversarial examples, which are inputs that have
been slightly modified to cause the DNN to make incorrect
predictions (Szegedy et al., 2014; Madry et al., 2017). This
vulnerability has raised concerns about the trustworthiness
of DNNs in safety-critical applications.

To address these concerns, researchers have developed a
number of methods for verifying the trustworthiness of
DNNs (see (Urban & Miné, 2021; Albarghouthi, 2021) for
a survey). Verification methods use formal proofs to show

1Department of Computer Science, University of Illinois,
Urbana-Champaign, USA 2VMware Research, Palo Alto, USA.
Correspondence to: Shubham Ugare <sugare2@illinois.edu>.

2nd Workshop on Formal Verification of Machine Learning, Hon-
olulu, Hawaii, USA. Colocated with ICML 2023. Copyright 2023
by the author(s).

that DNNs will behave correctly on a set of inputs. This is in
contrast to standard test-set accuracy measurements, which
only check DNN performance on a finite set of inputs.

Verification methods can be broadly classified as either com-
plete or incomplete. Complete methods are guaranteed to
provide an exact answer for the verification task, while
incomplete methods may fail to prove or disprove a trust-
worthiness property (Gehr et al., 2018a; Singh et al., 2018b;
2019b;a; Zhang et al., 2018; Xu et al., 2020; Salman et al.,
2019). Complete methods are more desirable, but they are
also more computationally expensive (Bunel et al., 2020a;b;
Bak et al., 2020; Ehlers, 2017; Ferrari et al., 2022; Fromherz
et al., 2021; Wang et al., 2021; Palma et al., 2021).

Problem of Existing Work: Deploying DNNs on real-
world systems has opened the question of optimizing the
computational cost of inference: to reduce this cost, re-
searchers have devised various techniques for approximat-
ing DNNs, which simplify the structure of the network
(typically post-training), while maintaining high accuracy
and robustness. Common approximation techniques in-
clude quantization – reducing numerical precision of the
weights (Gholami et al., 2021; Laurel et al., 2021); pruning
– removing weights (Frankle & Carbin, 2019); operator ap-
proximation – e.g. approximating convolutions (Figurnov
et al., 2016; Sharif et al., 2021)); and others.

Figure 1. A common deployment cycle for a deep neural network.

Figure 1 illustrates the DNN deployment process, which
iteratively optimizes the network. Checking whether the
optimized networks are robust is an important step in this
process, but currently developers mostly rely on empirical
testing due to the high cost of verification techniques. A
major limitation of almost all existing approaches for ver-
ifying deep neural networks is that the verifier needs to
be run from scratch end-to-end every time the network is
even slightly modified. Running precise verification from



Toward Continuous Verification of DNNs

scratch is an expensive operation and cannot keep up with
the rate at which the networks are modified during deploy-
ment. Overcoming this main limitation requires addressing
a fundamental problem in verifier design:

Can we reuse the proofs obtained when verifying a given
network to speed up the verification of its perturbed ver-
sions?

Incremental Verification: Formal methods research has
developed numerous techniques for incremental verification
of programs, that reuse the proof from previous revisions for
verifying the new revision of the program (Johnson et al.,
2013; Lakhnech et al., 2001; O’Hearn, 2018; Stein et al.,
2021). The main challenge in building an incremental veri-
fier on top of a non-incremental one is to determine which
information to pass on and how to effectively reuse this in-
formation. Often the classical programs’ commits are local
changes that affect only a small part of the big program.
In contrast, most DNN updates result in weight perturba-
tion across one or many layers of the network. This poses
a different and more difficult challenge than incremental
program verification.

Next, we summarize our work on incremental complete
(Section 2) and incomplete (Section 3) verification of DNNs.

2. Incremental Complete Verification
In our recent work (Ugare et al., 2023a), we address the
fundamental limitation of existing complete verifiers by pre-
senting IVAN, the first general technique for incremental
and complete verification of DNNs. An original network
and its updated network have similar behaviors on most of
the inputs, therefore the proofs of property on these net-
works are also related. IVAN accelerates the complete veri-
fication of a trustworthy property on the updated network
by leveraging the proof of the same property on the origi-
nal network. IVAN can be built on top of any Branch and
Bound (BaB) based method. The BaB verifier recursively
partitions the verification problem to gain precision. It is
currently the dominant technology for constructing com-
plete verifiers (Wang et al., 2018; Bunel et al., 2020a;b; Bak
et al., 2020; Ehlers, 2017; Ferrari et al., 2022; Fromherz
et al., 2021; Wang et al., 2021; Palma et al., 2021; Anderson
et al., 2019).

Our Solution: DNN complete verifiers employ distinct
heuristics for branching. A key challenge is to develop a
generic method that incrementally verifies a network per-
turbed across multiple layers and is applicable to multiple
complete verification methods, yet can provide significant
performance benefits.

IVAN computes a specification tree – a novel tree data struc-

Figure 2. Workflow of IVAN from left to right. IV AN takes the
original network N , input specification ϕ and output specification
ψ. It is built on top of a BaB-based complete verifier that utilizes
an analyzer A for the bounding, and heuristic H for branching.
IVAN refines a specification tree TN

f , result of verifying N , to
create a compact tree TNa

0 and updated branching heuristic H∆.
IVAN performs faster verification of Na exploiting both TNa

0 and
H∆.

ture representing the trace of BaB – from the execution of
the complete verifier on the original network. We design
new algorithms to refine the specification tree to create a
more compact tree. At a high level, the refinement involves
reordering the branching decisions such that the decisions
that worked well in the original verification are prioritized.
Besides, it removes the branching decisions that worked
poorly in the original verification by pruning nodes and
edges in the specification tree. IVAN also improves the
branching strategy in BaB for the updated network based on
the observed effectiveness of branching choices when veri-
fying the original DNN. The compact specification tree and
the improved branching strategy guide the BaB execution
on the updated network to faster verification, compared to
non-incremental verification that starts from scratch.

Workflow: Figure 2 illustrates the high-level idea behind
the workings of IVAN. It takes as input the original neural
network N , the updated network Na, a local or global input
region ϕ, and the output property ψ. The goal of IVAN is to
check whether, for all inputs in ϕ, the outputs of networks
N and Na satisfy ψ. N and Na have similar behaviors on
the inputs in ϕ, therefore the proofs of the property on these
networks are also related. IVAN accelerates the complete
verification of the property (ϕ, ψ) on Na by leveraging the
proof of the same property on N .

Results: IVAN yields up to 43x speedup over the baseline
based on state-of-the-art non-incremental verification tech-
niques (Henriksen & Lomuscio, 2021; Bunel et al., 2020a;
Singh et al., 2018b). It achieves a geometric mean speedup
of 2.4x across challenging fully-connected and convolu-
tional networks over the baseline. IVAN is generic and can
work with various common BaB branching strategies in the
literature (input splitting, ReLU splitting). Appendix A.1
describes the methodology for the evaluation.



Toward Continuous Verification of DNNs

Table 1. Overall IVAN speedups across all properties for various
quantizations.

Model Approximation IVAN
Sp +Solved

FCN-MNIST int16 4.43x 0
int8 2.02x 0

CONV-MNIST int16 3.09x 2
int8 1.71x 4

CONV-CIFAR int16 2.52x 2
int8 1.78x 0

CONV-CIFAR-WIDE int16 1.87x 2
int8 1.53x 2

CONV-CIFAR-DEEP int16 3.21x 0
int8 1.25x 1

Ugare et al. (2023a) evaluate IVAN on multiple approxi-
mations and BaB baselines. Here, we summarize part of
the evaluation that uses quantization. Table 1 presents the
comparison of the technique used in IVAN for each mode.
Column +Solved displays the number of extra verification
problems solved by the technique in comparison to the base-
line. Columns in IVAN present the results on using IVAN.
Column Sp demonstrates the overall speedup obtained com-
pared to the baseline.

3. Incremental Sound and Incomplete
Verification

This Work: Our recent paper (Ugare et al., 2022) presents
FANC, the first general approach for transferring proofs
between a given network and its multiple approximate ver-
sions. Our approach is generic and can be combined with
any existing state-of-the-art Splitincomplete verifier (Gehr
et al., 2018b; Katz et al., 2017; 2019; Lu & Kumar, 2020;
Salman et al., 2019; Singh et al., 2018a; 2019c) to improve
the speed of verifying the approximate versions of the given
network with fully-connected and convolutional layers and
various activation functions. FANC guarantees to be as
precise as the chosen verifier.

FANC first generates a set of templates – connected sym-
bolic shapes (e.g., boxes, polyhedra) at an intermediate layer
– by running a verifier through the original network. The
templates capture the proof of the property to be verified on
the original network. Next, FANC transfers these templates
to the approximate networks by incremental template modi-
fication so that they capture the proof on the approximate
versions. Finally, it runs the verifier on the approximate
networks but only until the layer where the template is em-
ployed. If the generated templates capture the intermediate
proof, then we have proved the property without running
the verifier end-to-end.

Workflow: Figure 3 illustrates the high-level idea of FANC.

Figure 3. Workflow of FANC from left to right. FANC consists
of three components: template generator, template transformer,
and fast verifier. First, the template generator takes the network
N as input and creates a set of templates. For each approximate
network, the template transformer transforms the templates. This
transformed template is used by our fast verifier to verify the
approximate network. The fast verifier either successfully verifies
the network and generates a certificate or reports that the property
may not hold.

It takes as input a neural network N , its approximate ver-
sion N app, a set of input regions ϕ as a precondition, and the
output property ψ as the postcondition. The neural network
verification problem corresponding to the property (ϕ,ψ)
involves proving that for all network inputs in ϕ, the corre-
sponding network output satisfies the postcondition ψ. The
goal of FANC is to speed up the proof of the property (ϕ,
ψ) on the approximate network by leveraging intermediate
proofs obtained by verifying N . FANC proves the same
number of properties as a vanilla baseline verifier (in our
case DeepZ) without templates but significantly faster. We
get up to 4.1x speedup on robustness certification tasks.

Results: We evaluate the effectiveness of FANC by veri-
fying robustness of challenging fully-connected and con-
volutional networks approximated with quantization and
pruning against different attacks. We considered four net-
work architectures, robustly trained on the popular MNIST
and CIFAR10 datasets. We verified the robustness of the
networks quantized using float16, int16, and int8 strate-
gies against five different adversarial attacks: adversarial
patches, L0-random, L0-center, rotation and brightening.
We used the state-of-the-art DeepZ (Singh et al., 2018a)
as the baseline verifier. FANC has significantly improved
verification time for the quantized networks, by up to 4.1x,
with a median speedup of 1.55x over DeepZ. We verified
the robustness of the networks with 10-90% pruning rates
against the adversarial patch attack. FANC has improved
verification time up to 2.8x, with a median speedup of 1.48x
over DeepZ. Appendix A.2 describes the methodology for
the evaluation.



Toward Continuous Verification of DNNs

Table 2. Average FANC speedups for verification for L0-random,
L0-center and patch attacks.

Model Approximation L0-random L0-center patch

FCN7-MNIST float16 3.03 2.63 2.25
int16 3.28 2.23 2.24
int8 3.93 1.57 2.63

CONV2-MNIST float16 1.72 1.53 1.41
int16 1.72 1.52 1.4
int8 1.61 1.43 1.34

FCN7-CIFAR float16 1.5 1.51 1.64
int16 1.75 1.75 1.47
int8 1 1.14 1.13

CONV4-CIFAR float16 1.37 1.28 1.41
int16 1.39 1.25 1.39
int8 1.19 1.26 1.28

Ugare et al. (2022) evaluate FANC on pruning and qunati-
zation. Here, we summarize part of the evaluation that uses
quantization. Table 2 summarizes the verification results
for different quantization approximations. Each column
presents the speedup obtained by FANC’s core verification
with proof transfer compared to the baseline (without the
template creation). In each case, the time in the table is
averaged over all the images used in the experiment.

4. Related Work
Incremental Program Verification. Incremental verifica-
tion has significantly improved the scalability of the tradi-
tional program verification (Johnson et al., 2013; Lakhnech
et al., 2001; O’Hearn, 2018; Stein et al., 2021). Incre-
mental program analysis tasks achieve faster analysis of
individual commits by reusing partial results (Yang et al.,
2009), constraints (Visser et al., 2012), and precision infor-
mation (Beyer et al., 2013) from previous runs. However,
often the program commits are local changes that affect
only a small part of the big program. In contrast, most DNN
updates result in weight perturbation across one or many
layers of the network. This poses a different and more diffi-
cult challenge than incremental program verification. Thus,
new algorithms and tools are required for incremental DNN
verification.

Incremental DNN Verification. Several methods have been
introduced in recent years to certify the properties of DNNs
deterministically (Tjeng et al., 2017; Bunel et al., 2020a;
Katz et al., 2017; Wang et al., 2021; Laurel et al., 2022)
and probabilisticly (Cohen et al., 2019). More recently,
few works used incremental verification to improve the
scalability of DNN verification (Fischer et al., 2022; Ugare
et al., 2022; Wei & Liu, 2021; Ugare et al., 2023a) – these
works apply complete and incomplete formal verification.

5. Discussion and Future Work
More Aggressive Weight Perturbation. Both IVAN and
FANC have limitations in reusing proofs under certain levels

of perturbation. As the perturbation increases, the benefit
decreases. There is a point where the approximate DNN
is semantically different from the original DNN. Further
research is needed to determine the precise class of DNNs
for which proof reusability is feasible. This knowledge
will facilitate the utilization of proofs for more aggressive
perturbations, such as those encountered during subsequent
training iterations.

Incremental Probabilistic Verification. The techniques
presented in this paper provide incremental deterministic
certification, but they lack scalability for high-dimensional
inputs like ImageNet or state-of-the-art models such as
ResNet. To support such models and datasets, it is important
that future research develops incremental frameworks to en-
hance the speed of probabilistic methods like Randomized
Smoothing. Our first steps toward this goal are presented
in (Ugare et al., 2023b).

Proof Transfer Across Inputs. This work has demon-
strated the possibility of proof reuse across networks. Previ-
ous work has demonstrated the feasibility of reusing proofs
across specifications (Fischer et al., 2022). In a similar
vein, future research may explore the potential for reusing
proofs across similar inputs. For example, in the case of
video input, where subsequent frames exhibit similarity, this
approach is likely to be effective.

6. Conclusion
Our research introduces an incremental DNN verification
framework to overcome the inefficiencies associated with
verifying updated DNNs. By leveraging novel theories, data
structures, and algorithms, our framework improves the ef-
ficiency of verification processes. We have presented the
advancements made in incremental verification in our pre-
vious works, as summarized in this paper. The potential of
incremental verification in enabling real-world DNN verifi-
cation systems has been explored. This research opens up
new avenues for efficient and practical verification of DNNs,
facilitating their reliable deployment in various domains.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. This
research was supported in part by NSF Grants No. CCF-
1846354, CCF-1956374, CCF-2008883, CCF-2217144,
CCF-2238079, CNS-2148583, USDA NIFA Grant No.
NIFA-2024827 and Qualcomm innovation fellowship.

References
Albarghouthi, A. Introduction to Neural Network Veri-

fication. verifieddeeplearning.com, 2021. http://
verifieddeeplearning.com.

http://verifieddeeplearning.com
http://verifieddeeplearning.com


Toward Continuous Verification of DNNs

Amato, F., López, A., Peña-Méndez, E. M., Vaňhara, P.,
Hampl, A., and Havel, J. Artificial neural networks in
medical diagnosis. Journal of Applied Biomedicine, 11
(2):47–58, 2013.

Anderson, G., Pailoor, S., Dillig, I., and Chaudhuri, S. Opti-
mization and abstraction: A synergistic approach for ana-
lyzing neural network robustness. In Proc. Programming
Language Design and Implementation (PLDI), 2019.

Bak, S., Tran, H., Hobbs, K., and Johnson, T. T. Im-
proved geometric path enumeration for verifying relu
neural networks. In Lahiri, S. K. and Wang, C. (eds.),
Computer Aided Verification - 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part I, volume 12224 of Lecture Notes
in Computer Science, pp. 66–96. Springer, 2020. doi:
10.1007/978-3-030-53288-8\ 4. URL https://doi.
org/10.1007/978-3-030-53288-8_4.

Balunovic, M. and Vechev, M. Adversarial training
and provable defenses: Bridging the gap. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SJxSDxrKDr.

Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., and
Wendler, P. Precision reuse for efficient regression ver-
ification. In Proceedings of the 2013 9th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE
2013, pp. 389–399, New York, NY, USA, 2013. Associa-
tion for Computing Machinery. ISBN 9781450322379.
doi: 10.1145/2491411.2491429. URL https://doi.
org/10.1145/2491411.2491429.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., and
Mudigonda, P. Branch and bound for piecewise linear
neural network verification. Journal of Machine Learning
Research, 21(2020), 2020a.

Bunel, R. R., Hinder, O., Bhojanapalli, S., and Dvijotham, K.
An efficient nonconvex reformulation of stagewise convex
optimization problems. Advances in Neural Information
Processing Systems, 33, 2020b.

Chiang, P.-y., Ni, R., Abdelkader, A., Zhu, C., Studor,
C., and Goldstein, T. Certified defenses for adversar-
ial patches. In International Conference on Learning
Representations, 2020.

Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certi-
fied adversarial robustness via randomized smoothing.

In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 1310–1320. PMLR,
2019. URL http://proceedings.mlr.press/
v97/cohen19c.html.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and
Li, J. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Ehlers, R. Formal verification of piece-wise linear feed-
forward neural networks. In International Symposium
on Automated Technology for Verification and Analysis,
2017.

Ferrari, C., Mueller, M. N., Jovanović, N., and Vechev,
M. Complete verification via multi-neuron relaxation
guided branch-and-bound. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=l_amHf1oaK.

Figurnov, M., Ibraimova, A., Vetrov, D. P., and Kohli, P.
Perforatedcnns: Acceleration through elimination of re-
dundant convolutions. In Advances in Neural Information
Processing Systems 2016, pp. 947–955, 2016.

Fischer, M., Sprecher, C., Dimitrov, D. I., Singh, G.,
and Vechev, M. T. Shared certificates for neural net-
work verification. In Shoham, S. and Vizel, Y. (eds.),
Computer Aided Verification - 34th International Con-
ference, CAV 2022, Haifa, Israel, August 7-10, 2022,
Proceedings, Part I, volume 13371 of Lecture Notes in
Computer Science, pp. 127–148. Springer, 2022. doi:
10.1007/978-3-031-13185-1\ 7. URL https://doi.
org/10.1007/978-3-031-13185-1_7.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Proc. Inter-
national Conference on Learning Representations (ICLR),
2019.

Fromherz, A., Leino, K., Fredrikson, M., Parno, B., and
Pasareanu, C. Fast geometric projections for local
robustness certification. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=zWy1uxjDdZJ.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. Ai2: Safety and robustness
certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy
(SP), 2018a.

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://openreview.net/forum?id=SJxSDxrKDr
https://openreview.net/forum?id=SJxSDxrKDr
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=l_amHf1oaK
https://doi.org/10.1007/978-3-031-13185-1_7
https://doi.org/10.1007/978-3-031-13185-1_7
https://openreview.net/forum?id=zWy1uxjDdZJ
https://openreview.net/forum?id=zWy1uxjDdZJ


Toward Continuous Verification of DNNs

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. T. AI2: safety and robust-
ness certification of neural networks with abstract inter-
pretation. In IEEE S&P Symposium, pp. 3–18, 2018b.
doi: 10.1109/SP.2018.00058.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney,
M. W., and Keutzer, K. A survey of quantization
methods for efficient neural network inference. CoRR,
abs/2103.13630, 2021. URL https://arxiv.org/
abs/2103.13630.

Gurobi Optimization, LLC. Gurobi optimizer reference
manual, 2018.

Henriksen, P. and Lomuscio, A. Deepsplit: An efficient
splitting method for neural network verification via in-
direct effect analysis. In Zhou, Z.-H. (ed.), Proceedings
of the Thirtieth International Joint Conference on Artifi-
cial Intelligence, IJCAI-21, pp. 2549–2555. International
Joint Conferences on Artificial Intelligence Organization,
8 2021. doi: 10.24963/ijcai.2021/351. URL https:
//doi.org/10.24963/ijcai.2021/351. Main
Track.

Johnson, K., Calinescu, R., and Kikuchi, S. An in-
cremental verification framework for component-based
software systems. In Proceedings of the 16th In-
ternational ACM Sigsoft Symposium on Component-
Based Software Engineering, CBSE ’13, pp. 33–42,
New York, NY, USA, 2013. Association for Comput-
ing Machinery. ISBN 9781450321228. doi: 10.1145/
2465449.2465456. URL https://doi.org/10.
1145/2465449.2465456.

Julian, K. D., Kochenderfer, M. J., and Owen, M. P. Deep
neural network compression for aircraft collision avoid-
ance systems. CoRR, abs/1810.04240, 2018.

Julian, K. D., Kochenderfer, M. J., and Owen, M. P. Deep
neural network compression for aircraft collision avoid-
ance systems. Journal of Guidance, Control, and Dy-
namics, 42(3):598–608, mar 2019. doi: 10.2514/1.
g003724. URL https://doi.org/10.2514%2F1.
g003724.

Katz, G., Barrett, C. W., Dill, D. L., Julian, K., and Kochen-
derfer, M. J. Reluplex: An efficient SMT solver for verify-
ing deep neural networks. In Computer Aided Verification
- 29th International Conference, CAV, volume 10426, pp.
97–117, 2017. doi: 10.1007/978-3-319-63387-9\ 5.

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus,
C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljic, A.,
Dill, D. L., Kochenderfer, M. J., and Barrett, C. W. The
marabou framework for verification and analysis of deep

neural networks. In International Conference on Com-
puter Aided Verification, CAV, volume 11561, pp. 443–
452, 2019. doi: 10.1007/978-3-030-25540-4\ 26.

Lakhnech, Y., Bensalem, S., Berezin, S., and Owre, S. In-
cremental verification by abstraction. In Margaria, T. and
Yi, W. (eds.), Tools and Algorithms for the Construction
and Analysis of Systems: 7th International Conference,
TACAS 2001, volume 2031, pp. 98–112, Genova, Italy,
April 2001. Springer-Verlag.

Laurel, J., Yang, R., Sehgal, A., Ugare, S., and Misailovic,
S. Statheros: Compiler for efficient low-precision proba-
bilistic programming. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 787–792, 2021. doi:
10.1109/DAC18074.2021.9586276.

Laurel, J., Yang, R., Ugare, S., Nagel, R., Singh, G.,
and Misailovic, S. A general construction for abstract
interpretation of higher-order automatic differentiation.
Proc. ACM Program. Lang., 6(OOPSLA2), oct 2022.
doi: 10.1145/3563324. URL https://doi.org/10.
1145/3563324.

Lu, J. and Kumar, M. P. Neural network branching for
neural network verification. In International Conference
on Learning Representations, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

O’Hearn, P. W. Continuous reasoning: Scaling the im-
pact of formal methods. In Dawar, A. and Grädel, E.
(eds.), Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Ox-
ford, UK, July 09-12, 2018, pp. 13–25. ACM, 2018.
doi: 10.1145/3209108.3209109. URL https://doi.
org/10.1145/3209108.3209109.

Palma, A. D., Behl, H. S., Bunel, R. R., Torr, P. H. S., and
Kumar, M. P. Scaling the convex barrier with active sets.
In 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

Paulsen, B., Wang, J., and Wang, C. Reludiff: differential
verification of deep neural networks. In ICSE ’20: 42nd
International Conference on Software Engineering, 2020.
doi: 10.1145/3377811.3380337.

Salman, H., Yang, G., Zhang, H., Hsieh, C., and Zhang, P. A
convex relaxation barrier to tight robustness verification
of neural networks. In Advances in Neural Information
Processing Systems 32, pp. 9832–9842, 2019.

https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.1145/2465449.2465456
https://doi.org/10.1145/2465449.2465456
https://doi.org/10.2514%2F1.g003724
https://doi.org/10.2514%2F1.g003724
https://doi.org/10.1145/3563324
https://doi.org/10.1145/3563324
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/3209108.3209109


Toward Continuous Verification of DNNs

Sharif, H., Zhao, Y., Kotsifakou, M., Kothari, A., Schreiber,
B., Wang, E., Sarita, Y., Zhao, N., Joshi, K., Adve, V. S.,
Misailovic, S., and Adve, S. V. Approxtuner: a com-
piler and runtime system for adaptive approximations. In
PPoPP ’21: 26th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pp. 262–277,
2021. doi: 10.1145/3437801.3446108.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev,
M. Fast and effective robustness certification. In Ad-
vances in Neural Information Processing Systems, vol-
ume 31, 2018a.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev,
M. Fast and effective robustness certification. Advances
in Neural Information Processing Systems, 31, 2018b.

Singh, G., Ganvir, R., Püschel, M., and Vechev, M. Beyond
the single neuron convex barrier for neural network certi-
fication. In Advances in Neural Information Processing
Systems, 2019a.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. An abstract
domain for certifying neural networks. Proceedings of
the ACM on Programming Languages, 3(POPL), 2019b.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. T. An
abstract domain for certifying neural networks. Proc.
ACM Program. Lang., 3(POPL), 2019c. doi: 10.1145/
3290354.

Singh, G. et al. Eran. https://github.com/eth-sri/eran, 2018c.

Stein, B., Chang, B. E., and Sridharan, M. Demanded
abstract interpretation. In Freund, S. N. and Yahav,
E. (eds.), PLDI ’21: 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-
25, 2021, pp. 282–295. ACM, 2021. doi: 10.1145/
3453483.3454044. URL https://doi.org/10.
1145/3453483.3454044.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing properties
of neural networks. In 2nd International Conference on
Learning Representations, 2014.

TFLite. Tf lite post-training quantization, 2017.

Tjeng, V., Xiao, K., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
arXiv preprint arXiv:1711.07356, 2017.

Ugare, S., Singh, G., and Misailovic, S. Proof transfer for
fast certification of multiple approximate neural networks.
Proc. ACM Program. Lang., 6(OOPSLA):1–29, 2022.
doi: 10.1145/3527319. URL https://doi.org/10.
1145/3527319.

Ugare, S., Banerjee, D., Misailovic, S., and Singh, G. Incre-
mental verification of neural networks. Proc. ACM Pro-
gram. Lang., 7(PLDI), jun 2023a. doi: 10.1145/3591299.
URL https://doi.org/10.1145/3591299.

Ugare, S., Suresh, T., Banerjee, D., Singh, G., and Mis-
ailovic, S. Incremental randomized smoothing certifica-
tion, 2023b.

Urban, C. and Miné, A. A review of formal methods applied
to machine learning, 2021. URL https://arxiv.
org/abs/2104.02466.

Visser, W., Geldenhuys, J., and Dwyer, M. B. Green: Re-
ducing, reusing and recycling constraints in program
analysis. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, FSE ’12, New York, NY, USA, 2012. Asso-
ciation for Computing Machinery. ISBN 9781450316149.
doi: 10.1145/2393596.2393665. URL https://doi.
org/10.1145/2393596.2393665.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Efficient formal safety analysis of neural networks. In Ad-
vances in Neural Information Processing Systems, 2018.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for complete and
incomplete neural network verification. arXiv preprint
arXiv:2103.06624, 2021.

Wei, T. and Liu, C. Online verification of deep neu-
ral networks under domain or weight shift. CoRR,
abs/2106.12732, 2021. URL https://arxiv.org/
abs/2106.12732.

Wong, E. and Kolter, Z. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
In International Conference on Machine Learning, 2018.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang,
M., Kailkhura, B., Lin, X., and Hsieh, C. Automatic
perturbation analysis for scalable certified robustness and
beyond. 2020.

Yang, G., Dwyer, M. B., and Rothermel, G. Regression
model checking. In 2009 IEEE International Conference
on Software Maintenance, pp. 115–124, 2009. doi: 10.
1109/ICSM.2009.5306334.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. In Advances in
neural information processing systems, 2018.

https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3527319
https://doi.org/10.1145/3527319
https://doi.org/10.1145/3591299
https://arxiv.org/abs/2104.02466
https://arxiv.org/abs/2104.02466
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/2393596.2393665
https://arxiv.org/abs/2106.12732
https://arxiv.org/abs/2106.12732


Toward Continuous Verification of DNNs

A. Appendix
A.1. IVAN Evaluation Methodology

Table 3. Models and the perturbation ϵ used for the evaluation for incremental verification.

Model Architecture Dataset #Neurons Training Method ϵ

ACAS-XU Networks 6× 50 linear layers ACAS-XU 300 Standard (Julian et al., 2019) -
FCN-MNIST 2× 256 linear layers MNIST 512 Standard 0.02
CONV-MNIST 2 Conv, 2 linear layers MNIST 9508 Certified Robust (Balunovic & Vechev, 2020) 0.1
CONV-CIFAR 2 Conv, 2 linear layers CIFAR10 4852 Empirical Robust (Dong et al., 2018) 2

255
CONV-CIFAR-WIDE 2 Conv, 2 linear layers CIFAR10 6244 Certified Robust (Wong & Kolter, 2018) 4

255
CONV-CIFAR-DEEP 4 Conv, 2 linear layers CIFAR10 6756 Certified Robust (Wong & Kolter, 2018) 4

255

Networks and Properties. We evaluate IVAN on models with various architectures that are trained with different training
methods. Similar to most of the previous literature, we verify L∞-based local robustness properties for MNIST and
CIFAR10 networks and choose standard ϵ values used for evaluating complete verifiers. Table 4 presents the evaluated
models and the choice of ϵ for the local robustness properties.

Network Perturbation. Similar to previous works (Paulsen et al., 2020; Ugare et al., 2022), we use quantization to
generate perturbed networks. Specifically, we use int8 and int16 post-training quantizations. The quantization scheme
has the form (TFLite, 2017): r = s(q − zp). Here, q is the quantized value and r is the real value; s which is the scale and
zp which is the zero point are the parameters of quantization. Our experiments use symmetric quantization with zp = 0.

Baseline. For proving the local robustness properties, we use LP-based triangle relaxation for bounding (Ehlers, 2017;
Bunel et al., 2020a), and we use the estimation based on coefficients of the zonotopes for choosing the ReLU splitting
(Henriksen & Lomuscio, 2021).

Experimental Setup. We use 64 cores of an AMD Ryzen Threadripper CPU with the main memory of 128 GB running the
Linux operating system. The code for our tool is written in Python. We use the GUROBI (Gurobi Optimization, LLC, 2018)
solver for our LP-based analyzer.

A.2. FANC Evaluation Methodology

Networks: Table 4 presents the models used in evaluation. All the models are robustly trained using the training procedure
from Chiang et al. (2020). The approximate network versions are generated using post-training quantization and pruning. In
the case of CNN, only the weight parameters corresponding to the fully-connected layers are pruned. SplitFor non-robustly
trained networks, even the verification on the original network fails most of the time (as we empirically observed) and
approximating such networks is unlikely to lead to robust networks. Since the verification is unlikely to succeed, we did not
use such networks in our evaluation.

Perturbations: We used the patch, two versions of L0 attack (L0-random and L0-center):

• For the L0-random attack, we first choose 3 as the threshold for perturbation. Proving robustness against all possible
3-pixel perturbation is currently impractical since it takes

(
729
3

)
verification instance for one MNIST image. Hence, we

perform verification against 1000 randomly sampled combinations of 3 pixels.

• For the L0-center choose all the combinations of 3 pixels from the center of the picture since the center of the image
contains an important part of the image in both MNIST and CIFAR10. We selected all

(
20
3

)
set of 3 pixels from the

central 5× 4 patch in the image.

• For the patch attack, we verify the model against all perturbations in 2× 2 patches.

Quantization: In this paper, we consider int8, int16 and float16 post-training quantizations. The quantization scheme is of
the form (TFLite, 2017):

r = s(q − zp) (1)

Here, q is the quantized value and r is the real value. s which is the scale and zp which is the zero point are the parameters
of quantization. For our experiments, we use symmetric quantization that uses zp = 0. The quantization scheme uses a



Toward Continuous Verification of DNNs

Table 4. Models used for the evaluation.
Model Architecture Dataset #Neurons

FCN7-MNIST 7× 200 linear layers MNIST 1400
FCN7-CIFAR 7× 200 linear layers CIFAR10 1400
CONV2-MNIST 2 Conv layers, 4 linear layers MNIST 2456
CONV4-CIFAR 4 Conv layers, 4 linear layers CIFAR10 8960

single set of quantization parameters for all values within each layer. At inference, weights are converted from quantized
value to the floating point and computations are performed using floating-point kernels. SplitWe randomly selected 25
images from the dataset for the quantization experiments. Each image generates 729 verification instances in case of a
patch attack on MNIST, and similarly, there are multiple verification instances generated from a single image for other
perturbations (L0-random, L0-center, rotation, brightness) as described earlier.

Pruning: At each iteration, we prune the smallest 10% model weights in each layer. Similar to many other iterative pruning
techniques, we prune only affine layers (we do not prune weights in the convolution layer or biases, since they are much
fewer in number than affine layer weights). We verify the robustness of each model against patch perturbation. We randomly
select 10 images from the dataset and create input regions for every possible 2× 2 patch perturbation. The number of input
regions per image is 729 for MNIST and 961 for CIFAR10. In this experiment, we perform 10 pruning iterations.

Implementation: Code for our tool is written in Python and it is implemented on top of the ELINA library (Singh et al.,
2019c; 2018a) for numerical abstractions. For all our experiments, we use DeepZ (Singh et al., 2018a) as the library
underlying our analyzer and verifier. We use the zonotope abstract domain for the analysis. However, we store the templates
using box abstraction since checking containment in the box is much faster.

Baseline: As the baseline, we use the plain DeepZ verifier for verification without proof transfer. We use the publicly
available implementation of DeepZ in ERAN library (Singh et al., 2018c).

Experimental Setup: For all the experiments we use 24 cores of an Intel Xeon E5-2687W CPU with a main memory of 64
GB running Linux operating system.


