
186

ApproxHPVM: A Portable Compiler IR for Accuracy-Aware
Optimizations

HASHIM SHARIF, University of Illinois at Urbana-Champaign, USA
PRAKALP SRIVASTAVA, University of Illinois at Urbana-Champaign, USA
MUHAMMAD HUZAIFA, University of Illinois at Urbana-Champaign, USA
MARIA KOTSIFAKOU, University of Illinois at Urbana-Champaign, USA
KEYUR JOSHI, University of Illinois at Urbana-Champaign, USA
YASMIN SARITA, Cornell University, USA
NATHAN ZHAO, University of Illinois at Urbana-Champaign, USA
VIKRAM S. ADVE, University of Illinois at Urbana-Champaign, USA
SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA
SARITA ADVE, University of Illinois at Urbana-Champaign, USA

ABSTRACT
We propose ApproxHPVM, a compiler IR and system designed to enable accuracy-aware performance and
energy tuning on heterogeneous systems with multiple compute units and approximation methods. ApproxH-
PVM automatically translates end-to-end application-level quality metrics into accuracy requirements for
individual operations. ApproxHPVM uses a hardware-agnostic accuracy-tuning phase to do this translation
that provides greater portability across heterogeneous hardware platforms and enables future capabilities like
accuracy-aware dynamic scheduling and design space exploration.

ApproxHPVM incorporates three main components: (a) a compiler IR with hardware-agnostic approxi-
mation metrics, (b) a hardware-agnostic accuracy-tuning phase to identify error-tolerant computations, and
(c) an accuracy-aware hardware scheduler that maps error-tolerant computations to approximate hardware
components. As ApproxHPVM does not incorporate any hardware-specific knowledge as part of the IR, it can
serve as a portable virtual ISA that can be shipped to all kinds of hardware platforms.

We evaluate our framework on nine benchmarks from the deep learning domain and five image processing
benchmarks. Our results show that our framework can offload chunks of approximable computations to
special-purpose accelerators that provide significant gains in performance and energy, while staying within
user-specified application-level quality metrics with high probability. Across the 14 benchmarks, we observe
from 1-9x performance speedups and 1.1-11.3x energy reduction for very small reductions in accuracy.
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1 INTRODUCTION

With the slowdown ofMoore’s Law and the end of Denard scaling, the gap between hardware perfor-
mance and the ever-increasing requirements of modern applications continues to widen [St. Amant
et al. 2014]. Recent paradigms such as approximate computing attempt to bridge the gap by intro-
ducing novel hardware architectures and software optimizations that trade-off accuracy for gains
in performance and energy [Stanley-Marbell et al. 2018]. Approximate computing is particularly
relevant for application domains that can tolerate small errors with acceptable loss in the final
output, such as signal processing, speech recognition, sensor networks, information retrieval, data
mining, video decoding, game engines, and machine learning.

Approximate computing techniques can be realized in many architectural components: floating-
point units, caches, DRAM, and analog and digital accelerators [Esmaeilzadeh et al. 2012; Srivastava
et al. 2018; St. Amant et al. 2014]. Software techniques are similarly diverse, such as loop perfora-
tion [Sidiroglou-Douskos et al. 2011], barrier elision [Misailovic et al. 2012], reduction sampling,
and function substitution [Zhu et al. 2012]. A given computational algorithm or kernel may ben-
efit from multiple different approximation techniques, and moreover, a realistic application will
contain several (or many) distinct kernels. Determining how best to map such an application to
a modern heterogeneous system while achieving the best overall tradeoff between end-to-end
application-level accuracy and performance or energy is an open research problem. Moreover,
application developers and end users cannot be expected to specify error tolerances in terms of
the system-level parameters required by the various approximation techniques, or even know
about many of them: we need automated mapping strategies that can translate application-level
specifications (e.g., tolerable classification error in a machine learning application) to system-level
parameters (e.g., neural network parameter precision or circuit-level voltage swings).
In addition, software portability is a critical requirement for modern applications, not just at

the source-code level but also the ability to ship software that can execute efficiently on a wide
range of systems. Modern applications for both desktop and mobile (e.g., smartphone or tablet)
systems are almost always shipped by application teams to end-users in a form that can execute
on multiple system configurations (e.g., with different vector ISAs or GPUs) and even multiple
hardware generations (e.g., across x86 processors). GPUs, for example, provide virtual instructions
sets, e.g., PTX [NVIDIA 2010] or HSAIL [Sander 2013], to enable software to be shipped as “virtual
object code” that is translated to particular hardware instances only on the end-user’s system. This
is a major challenge for approximate computing approaches because hardware-specific accuracy-
performance-energy choices can make orders-of-magnitude difference in the performance and
energy benefits achieved in exchange for relaxing accuracy. A critical goal for real-world use of
such approaches is to enable software to be shipped as portable virtual object code, while deferring
the hardware-specific aspects of accuracy-performance-energy optimizations to be performed after
shipping [Ansel et al. 2011] (e.g., on the end-user’s device or on servers in an app store).

Existing systems for accuracy-aware optimizations do not provide a fully automated framework
that is able to target multiple heterogeneous devices with diverse approximation choices without
requiring programmer-guided low-level annotations. We propose ApproxHPVM, a unified com-
piler IR and framework that solves both the problems above – ease of programming and object-code
portability – and does in a fully automatic manner:

� Programmers only have to specify application-level, end-to-end error tolerance constraints, and
ApproxHPVMcan use this information to optimize and schedule programs on a heterogeneous
system containing multiple approximation techniques; and
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� ApproxHPVM enables software portability by using a hardware-agnostic, accuracy-aware
compiler IR and virtual ISA, and by partitioning the accuracy-energy-performance optimiza-
tions into a hardware-agnostic stage and a hardware-specific stage, where software can be
shipped between the two stages.

The ApproxHPVM system takes as input a program compiled to the ApproxHPVM Interme-
diate Representation (IR), and end-to-end quality metrics that quantify the acceptable difference
between approximate and non-approximate outputs. It generates final code that maps individual
approximable computations within the program to specific hardware components and specific
chosen approximation techniques, while satisfying end-to-end constraints with high probability
and attempting to minimize execution time and maximize energy savings under those constraints.
To our knowledge, no previous system achieves both full automation from end-to-end application-
level quality specifications, and support for multiple approximation mechanisms (on one or more
heterogeneous compute units). Moreover, previous systems do not provide object code portability.

ApproxHPVM solves three key technical challenges to achieve these goals:
� For applications with multiple approximable computations, it automatically translates end-
to-end error specifications to individual error specifications and bounds per approximable
computation, while statistically guaranteeing with high probability that the end-to-end
specifications are satisfied.
� It automatically determines how to map approximable computations to a variety of compute
units and multiple approximation mechanisms, including efficient special-purpose accelera-
tors designed to provide improved performance with lower accuracy guarantees.
� It optionally provides object code portability by decoupling the overall mapping and compi-
lation problem into a hardware-independent autotuning stage and a subsequent hardware-
dependent mapping stage.

The portability is optional because it does not always come for free: the optimization choices
may sometimes be suboptimal compared to a single, end-to-end and hardware-specific strategy, as
we show in our experiments. ApproxHPVM supports either strategy, and so the unified, hardware-
specific strategy can be used when portability is not a requirement.

An additional benefit of the two-stage mapping strategy is that the autotuning can be very slow,
while the second, hardware-specific stage is extremely fast, essentially just a small number of table
lookups. This enables approximate computing techniques to be supported in situations such as
dynamic scheduling (where accuracy-aware mapping decisions must be performed at run-time) and
hardware design space exploration (for designing hardware variations with different approximation
options or parameter settings). We are exploring both opportunities in our current research.
ApproxHPVM solves these challenges in a domain-specific manner, through a number of key

features. The ApproxHPVM Intermediate Representation (IR) is an extension of Heterogeneous
Parallel Virtual Machine (HPVM), a retargetable compiler infrastructure and portable virtual ISA
for heterogeneous parallel systems [Kotsifakou et al. 2018]. HPVM itself is built on LLVM [Lattner
and Adve 2004], and can use LLVM compiler passes and code generators for individual tasks. These
design choices allow ApproxHPVM to target diverse heterogeneous parallel systems, and also to
serve as a fully self-contained, portable virtual ISA that can be shipped and mapped to a variety of
hardware configurations. ApproxHPVM defines a set of approximable domain-specific operations
as part of the IR, which enables the compiler to identify approximable computations, and also to
define hardware-independent but domain-specific error metrics as attributes of those operations.
The initial domain supported in our work is tensor computations, which are general enough to
support a number of important application domains such as neural networks and image processing.
(Although this approach focuses on domain-specific operations, our design and general strategy
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allow the speci�cations to be extended to generic low-level instructions.) It uses an autotuner
with randomized error injection to translate end-to-end speci�cations to individual error bounds
per approximable computation in a hardware-independentmanner, while satisfying end-to-end
application metrics. It uses a simple lookup table per approximation method per IR operation to
perform the second-stage hardware-dependentmanner very fast.

Speci�cally, we make the following key contributions:

Retargetable Compiler IR and Virtual ISA with Approximation Metrics: We show how
to capture hardware-agnostic approximation metrics in a parallel compiler IR, while preserving
retargetability across a wide range of heterogeneous parallel hardware. Moreover, the IR can serve
as a hardware-agnostic virtual ISA, and so software can be shipped between the two optimization
stages to achieve virtual object code portability for approximate computing applications.

Hardware-agnostic Accuracy Tuning: Given an end-to-end user-provided quality metric (e.g.,
reduced inference accuracy or PSNR for images), our hardware-independent accuracy tuner com-
putes the corresponding accuracy requirements for individual IR operations that can satisfy the
end-to-end goal. In this way, programmers need not understand the details of approximation
techniques in the underlying system.

Accuracy-aware Hardware Scheduling: The second stage maps individual tensor operations to
speci�c target compute units and to speci�c approximation options within those compute units, by
taking into account the error tolerance of operations and the accuracy guarantees provided by the
target compute unit. This mapping is a fast table-lookup, trained using o�ine accuracy pro�ling of
kernels running on the hardware.

Evaluation on Target Platform: To evaluate the e�cacy of ApproxHPVM, we study 9 DNN
benchmarks and 5 image processing �lters, using two di�erent accuracy thresholds for each: 1% and
2% decreases in inference accuracy for the DNNs, and 20dB and 30dB loss of PSNR for the image
processing �lters. We use the NVIDIA Jetson TX2 mobile SoC [NVIDIA 2018], which has 8GB of
shared memory between ARM cores and an NVIDIA Pascal GPU. We extend the platform by adding
a simulated version of a (fully programmable) Machine Learning accelerator called PROMISE,
which has previously been shown to provide orders of magnitude energy and throughput bene�ts
for a wide range of vector dot-product operations commonly used in ML kernels [Srivastava et al.
2018]. The combined platform provides 9 hardware settings to trade-o� energy and accuracy for
each tensor operation: FP32 or FP16 on the GPU and 7 voltage swing levels on PROMISE. Executing
all operations on the GPU with FP32 precision is considered the exact case. Our results show that
ApproxHPVM can successfully assign di�erent tensor operations to di�erent compute units (GPU or
PROMISE) with di�erent approximation options, achieving speedups of 1-9x and energy reductions
of 1.1-11.3x, while statistically guaranteeing the speci�ed accuracy metrics with 95% probability.

2 APPROXHPVM INTERNAL REPRESENTATION AND SYSTEM WORKFLOW

Figure 1 shows the overall ApproxHPVM work�ow. The primary input is a program written using
high-level abstractions of the Keras library [Gulli and Pal 2017], a popular open-source library
for deep neural networks on TensorFlow. Our frontend translates a Keras source program to the
ApproxHPVM IR. The second input is a programmer-speci�ed end-to-end quality threshold, a
domain-dependent parameter. For the neural network domain, we use the acceptable loss in �nal
classi�cation accuracy and for image processing pipelines, we use desired PSNR of the approximated
output.

ApproxHPVM's overall goal is to map the computations of the program to the compute units
on a target system, along with selected approximation parameter values on each compute unit, so
that the program outputs satisfy the speci�ed end-to-end accuracy. We decompose this mapping
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Table 1. Tensor intrinsics in the ApproxHPVM representation.

Tensor Intrinsic Description
i8* @tensor.mul (i8* lhs, i8* rhs) Performs a matrix multiply operation on the input tensors.
i8* @tensor.conv(i8* input, i8* �lter, i32 stride, i32
padding)

Applies a convolution �lter on input tensor with given stride
and padding.

i8* @tensor.add(i8* lhs, i8* rhs) Element-wise addition on input tensors.
i8* @tensor.reduce_window (i8* input, i32 reduc-
tion_type, i32 window_size)

Performs a (con�gurable) reduction operation over a speci�ed
window size on the input tensor.

i8* @tensor.relu (i8* input) Element-wise relu activation function.
i8* @tensor.clipped.relu (i8* input) Element-wise clipped relu activation function.
i8* @tensor.tanh (i8* input) Element-wise tanh activation function.

problem into a hardware-agnostic �rst stage and a hardware-speci�c second stage, for the reasons
described in Section 1.

Fig. 1. ApproxHPVM System Workflow

The hardware-agnostic accuracy-tuning phase
takes an end-to-end quality threshold and com-
putes the error tolerance for individual Approx-
HPVM operations, adding these requirements
in the IR. This phase guarantees that if these
error tolerances for individual operations are
(independently) satis�ed, then the end-to-end
accuracy speci�cation will also be satis�ed with
some high probability, e.g., 95%. The output of
this stage is hardware-agnostic ApproxHPVM
code, which is legal LLVM and can optionally
be used as a virtual instruction set to ship the
code as �virtual object code� to one or more tar-
gets [Lattner and Adve 2004]. For each target,
a (static) accuracy-aware hardware mapping
phase chooses which compute units should ex-
ecute each tensor operation, and optimizes any
approximation parameters available on each
compute unit to minimize energy and/or maximize performance, while satisfying theindividual
accuracy constraints on each operation. Finally, the code generation phase leverages the hardware-
speci�c backends to generate code for each compute unit. In our work, we build a) a GPU backend
that targets the cuDNN and cuBLAS libraries, which are optimized for high-level tensor operations,
and b) a PROMISE backend that targets a library that performs optimized tensor computations on
the PROMISE hardware simulator. The GPU can use FP32 or FP16 values for the network weights
and bias values, where FP32 is considered exact. PROMISE can only use 8-bit integers, and o�ers a
choice of seven voltage values to further trade o� accuracy for energy (see Section 3.2).

ApproxHPVM is inspired by and builds on HPVM [Kotsifakou et al. 2018], a data�ow graph
compiler IR for heterogeneous parallel hardware. We extend the HPVM IR to support execution of
basic linear algebra tensor computations and to specify accuracy metrics for each operation. We
�rst brie�y discuss the HPVM IR in the next subsection, and then describe our extensions to it.

2.1 Background: HPVM dataflow graph

HPVM [Kotsifakou et al. 2018] is a framework designed to address the performance and portability
challenges of heterogeneous parallel systems. At its core is the HPVM IR which is a parallel program
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representation that uses hierarchical data�ow graphs to capture a diverse range of coarse- and
�ne-grain data and task parallelism including pipeline parallelism, nested parallelism, and SPMD-
style (single program, multiple data) data parallelism. We showed that these abstractions allow
HPVM to compile from a single program representation in HPVM IR to diverse parallel hardware
targets such as multicore CPUs, vector instructions, and GPUs. ApproxHPVM leverages the existing
infrastructure of HPVM and extends it to compile to our heterogeneous approximate computing
platform.

An HPVM program consists of a set of one or more distinct data�ow graphs, which describe
the computationally heavy part of the program that is to be mapped to accelerators, and host code
that can initiate the execution and wait for the completion of the data�ow graphs. Nodes in the
HPVM data�ow graph (DFG) represent units of computation, and edges between nodes describe
explicit data transfer requirements between nodes. Each DFG node can be instantiated multiple
times at runtime, e�ectively enabling its computation to be performed multiple times. The dynamic
instances of a DFG must be independent, i.e., safe to execute in parallel. Di�erent nodes can access
the same shared memory locations by passing pointers along edges, which is important for modern
heterogeneous systems that support cache-coherent global and partial shared memory. A node can
begin execution once it receives a data item on every one of its input edges.

The HPVM DFG is hierarchical, i.e., a node can itself contain an entire DFG. Such nodes are
called internal nodes, while other nodes are leaf nodes. Computations in leaf nodes are represented
by ordinary LLVM scalar and vector instructions, and can include loops, function calls, and memory
accesses. The@hpvm.createNodeinstruction is used to create a node in the HPVM DFG, and the
@hpvm.createEdgeis used to connect an output of a node to an input of another node in HPVM.
The@hpvm.bind.input instruction is used to map an incoming edge of an internal node to the
input of a node in the internal DFG of this node.@hpvm.bind.outputinstructions serve a similar
purpose for outgoing edges.

The execution of a DFG is initiated by a �launch� operation in host code, and is asynchronous by
default. The host can block to wait for outputs from a DFG, if desired.

2.2 Tensor operations in ApproxHPVM

Domain-speci�c languages such as Tensor�ow and Pytorch allow for improved programmer
productivity and have gained wide-spread adoption. Accordingly, compilers such as XLA for
TensorFlow [The XLA Team 2019] and TVM for MxNet [Chen et al. 2018] are beginning to support
e�cient mapping of high-level domain-speci�c abstractions to heterogeneous parallel compute
units including CPUs, GPUs, FPGAs, and special-purpose accelerators, and to run-time libraries
like cuDNN or cuBLAS.

A general-purpose parallel IR such as HPVM translates high-level operations into generic low-
level LLVM instructions. However, such early lowering of domain-speci�c operations can result
in loss of important semantic information that may be needed by a back end to target run-time
libraries or domain-speci�c accelerators. Reconstructing the higher-level semantics after lowering
is generally very di�cult and sometimes infeasible.

Instead, we choose to incorporate high-level but broadly applicable operations into HPVM IR
directly. In this work, we extend the HPVM IR representation with linear algebra tensor operations
that allow for naturally expressing tensor-based applications. Tensors are used in a wide range
of important domains, including mechanics, electromagnetics, theoretical physics, quantum com-
puting, image processing and machine learning. For instance, convolutional neural networks may
be expressed using generic linear-algebra operations. This design choice provides two essential
bene�ts: a) it enables e�cient mapping of tensor operations to special purpose hardware and highly
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define i8* @tensorConvNode(i8* %input, i8* %filter) {
%result = call i8* @tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding)
return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_weights) {
%result = call i8* @tensor.add(i8* %input, i8* %bias_weights)
return i8* %result

}

define i8* @tensorReluNode(i8* %input) {
%result = call i8* @tensor.relu(i8* %input)
return i8* %result

}

define void @DFG_root(i8* %W, i8* %X, %B) { ; Root node of the Dataflow Graph
; Creating DFG nodes
%nodeConv = call i8* @hpvm.createNode(i8* @tensorConvNode)
%nodeAdd = call i8* @hpvm.createNode(i8* @tensorAddNode)
%nodeRelu = call i8* @hpvm.createNode(i8* @tensorReluNode)
; Creating data-flow edges between different DFG nodes
call void @hpvm.createEdge(i8* %nodeConv, i8* %nodeAdd, 1, 0, 0, 0)
call void @hpvm.createEdge(i8* %nodeAdd, i8* %nodeRelu, 1, 0, 0, 0)
; Binding the parent input to inputs of the leaf nodes
call void @hpvm.bind.input(i8* %nodeConv, 0, 0, 0)
call void @hpvm.bind.input(i8* %nodConv, 1, 1, 0)
call void @hpvm.bind.input(i8* %nodeAdd, 2, 1, 0)
; Binding final DFG node output to parent node output
call void @hpvm.bind.output(i8* %nodeRelu, 0, 0, 0)

}

Fig. 2. Convolution Layer sub-operations represented as ApproxHPVM tensor intrinsics in HPVM dataflow
nodes. The data-flow nodes are connected through explicit dataflow edges using HPVM intrinsics.

optimized target-speci�c runtime libraries, such as cuDNN for GPUs, and b) it allows approxi-
mation analyses to leverage domain-speci�c information, because the approximation properties,
parameters, and analysis techniques usually are determined by properties of the domain.

Table 1 presents the list of tensor intrinsics introduced in ApproxHPVM. The tensor operations
in ApproxHPVM are represented as calls to LLVM intrinsic functions (the same approach used by
HPVM). The intrinsic calls appear to existing LLVM passes as calls to unknown external functions,
so existing passes remain correct. For applications where all data-parallelism occurs via the tensor
operations, the data�ow graph is only used to capture pipelined and task parallelism across nodes,
while data-parallelism is captured by the tensor operation(s) within individual nodes.

Figure 2 presents a single neural network convolution layer encoded in ApproxHPVM. The
encoding uses three tensor intrinsics: @tensor.conv, @tensor.add, and @tensor.relu. TheDFG_root
function is the root of the data�ow graph, and would be invoked by host code. The root node is
an internal graph node, which creates the leaf nodestensorConvNode, tensorAddNodeandtensor-
ReluNode(usinghpvm.createNodecalls) and connects the nodes through data�ow edges (using
hpvm.createEdgecalls). The leaf nodes invoke the tensor intrinsics to perform tensor computations
on the input tensors. The output of the last node in the data�ow graph is connected to the output
of the root node and is returned back to the caller.
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define i8* @tensorConvNode(i8* %input, i8* %filter) {
%result = call i8* @tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding, float

%relative_l1, float %relative_l2)
return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_tensor) {
%result = call i8* @tensor.add(i8* %input, i8* %bias_tensor, float %relative_l1, float

%relative_l2)
return i8* %result

}

define i8* @tensorReluNode(i8* %input) {
%result = call i8* @tensor.relu(i8* %input, float %relative_l1, float %relative_l2)
return i8* %result

}

Fig. 3. Tensor intrinsics annotated with accuracy metrics. The accuracy metricsLe
1 and Le

2 are passed as
parameters to the intrinsic calls.

2.3 Approximation Metrics in the IR

The second key feature of ApproxHPVM is the use of hardware-independent approximation metrics
that quantify the accuracy of unreliable and approximate computations. We attach error metrics,
de�ned below, as additional arguments to high-level tensor operations. Our design allows the
speci�cations to be added to generic low-level instructions, but we do not use that in this work. To
express the (allowable) di�erence between approximate and exact tensor outputs, we use vector
distance metrics:

� RelativeL1 error: Le
1 = L1¹A� Gº

L1¹Gº where L1¹Xº = kXk1 =
Í

i jxi j
The numerator captures the sum of absolute di�erences between the approximate tensor
output A and the golden tensor outputG. The denominator is theL1 norm of the golden
output tensor, so that the ratio is the relative error.

� RelativeL2 error: Le
2 = L2¹A� Gº

L2¹Gº where L2¹Xº = kXk2 =
q Í

i x2
i

This is similar to theLe
1 norm, except that the numerator represents the Euclidean distance

and the denominator uses theL2 norm.

Note that the relativeL1 error and relativeL2 error are non-negative and lie in the the range
[0, +1 ).Figure 3 shows how the approximation metrics are represented in the compiler IR. The two
approximation parameters for each tensor operation are attached as additional arguments to the
respective intrinsic functions. While our current system only uses the two metrics described, our
implementation and analyses can be easily extended to include additional approximation metrics.

2.4 Keras Frontend

Keras [Gulli and Pal 2017] is a popular neural-network library that can run on top of Tensor�ow
and other frameworks. Keras provides a simple, programmable interface for providing high-level
descriptions of neural networks. We choose Keras since it allows us to identify the higher level tensor
computations that can be mapped to the ApproxHPVM tensor intrinsics. Moreover, since Keras
internally maintains the data-�ow relations across operations, this allows the front end to extract
the data-�ow information and translate it to data-�ow edges in ApproxHPVM relatively easily.
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model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),

activation= ' relu ' , padding = ' same' ,
input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (5, 5), activation= ' relu ' , padding = ' same' ))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1024, activation= ' relu ' ))
model.add(Dense(num_classes, activation= ' relu ' ))
model.add(Activation( ' softmax' ))

Fig. 4. LeNet-5 defined in Keras

Figure 4 presents the popular LeNet-5 neural network [LeCun et al. 1998] in Keras. The LeNet
architecture consists of 2 convolution layers and 2 fully-connected layers followed by a softmax
layer. Moreover, the convolution layer is followed by pooling layers that downsample the input
size. The frontend translates these high-level operations to ApproxHVPM tensor intrinsics. For
instance, the Conv2D operator in the example is translated to 3 tensor operations in the IR -
@tensor.conv, @tensor.add, and@tensor.relu . Similarly, the Dense operator (fully-connected
layer) is mapped to@tensor.mul, @tensor.add, and@tensor.relu . The MaxPooling operator is
mapped one-to-one to the@tensor.reduce_windowIR operation with appropriate parameters.
The parameters passed to each Keras operator (kernel sizes, pool sizes etc.) are also appropriately
passed as parameters to the intrinsic calls in the IR. Figure 2 shows how a single Conv2D operator
in Keras maps to ApproxHPVM code with high-level tensor intrinsics.

3 ACCURACY-AWARE MAPPING AND OPTIMIZATION

In this section, we describe the accuracy-aware mapping of computations to hardware compute
units in the ApproxHPVM system. ApproxHPVM uses a hardware-agnostic accuracy tuning phase
(Section 3.1) to determine per-operation accuracy requirements and an e�cient accuracy-aware
scheduler (Section 3.2) that maps the approximable components to hardware compute units and
hardware-level system parameters.

3.1 Hardware-Agnostic Accuracy Tuning

The goal of hardware-independent accuracy tuning is to compute the accuracy requirements
(represented by theLe

1 andLe
2 de�ned earlier) for each operation so that,if the individual requirements

are satis�ed, the user-provided end-to-end quality metric is met. For instance, a user may specify
an acceptable classi�cation accuracy degradation of 1%, allowing the tuner to lower the accuracy
constraints on a tensor multiply operation by 10%. By computing the individual accuracy constraints,
the tuner enables the hardware scheduler to mapindividual tensor operations to approximate
hardware independently. This independence goal is a compromise: better energy e�ciency or
performance or both might be achieved if two or more operations were considered together in the
second stage, but that would require a combinatorial optimization problem across all operations,
compute units, and approximation choices. Using independent decisions allows a much faster
decision problem in the second stage.

Figure 5 describes the overall work�ow of the accuracy-tuning phase. The heart of the accuracy-
tuner is an autotuning search that uses statistical error injection to model potential run-time errors
and directly executes the program on a standard GPU to measure the end-to-end accuracy vs.
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the expected (�golden�) output. If the hardware target was known, the autotuner could skip the
(arti�cial) error injection and instead execute the program on the target with a selected mapping
and selected approximation settings to estimate the error. Instead, the autotuner uses a hardware-
agnostic error model and objective function to perform the search. Since our tuner uses statistical
error injection to validate the accuracy constraints, the autotuner enforces the accuracy threshold
to be met with a certain tunable success rate (�xed at 95% in our experiments).

Fig. 5. Hardware-agnostic accuracy-tuning workflow.

Autotuning framework . Considering real-
istic applications with multiple tunable oper-
ations, the size of the search space makes ex-
haustive search intractable. To enable e�cient
search, we use OpenTuner [Ansel et al. 2014],
an extensible framework for building domain-
speci�c autotuners. OpenTuner allows users to
con�gure a domain-speci�c search space and
specify a custom objective function. Prior work
has shown that OpenTuner provides promis-
ing results with enormous search spaces, ex-
ceeding103600possible con�gurations. Lever-
aging OpenTuner, we build our custom accu-
racy tuner that tunes the error knob for each
tensor operation while minimizing an objective
function. The objective functions we use are de-
scribed below. In our experiments, we are able
to extract high-quality con�gurations while searching through only a small subset of the full search
space. For our experiments, we run OpenTuner for a total of 1000 iterations, where each iteration
generates a unique con�guration.

Inputs . The accuracy-tuner takes as input an end-to-end accuracy thresholdT, and the target
program compiled to ApproxHPVM, and generates a set of con�gurations, de�ned below.

Error Injection . The accuracy tuner works by injecting errors into the outputs of individual
tensor operations and predicting their impact on end-to-end accuracy. The key to making our
decomposed strategy work is to do this analysis in a hardware-independent manner. We achieve
this by using a simple, hardware-agnostic error model, where errors in the outputs of tensor values
X[i] are injected as:X»i¼= X»i¼ � ¹1+ E� N¹ 0; 1ºº. The parameterE provides a simple, linear error
model optimized by the autotuner, producing hardware-agnostic error values that can be mapped
by the back-ends to hardware-speci�c approximation choices.

In our analysis, we choose the value ofE from 1 to 15, increasing linearly, thereby linearly
increasing theLe

1 andLe
2 metrics. In our experiments, we tune the values of theL1 error norm

ranging from 0.5% to 40%.
Search Space and Con�gurations . A con�guration in the autotuning search consists of a

value of the error parameterE assigned to each of the tensor operations in the target program. By
selecting this value at each operation, the autotuner controls the magnitude of error injected into
each tensor operation. For instance, one con�guration for the code in example 2 may look like:

Configuration: {
hpvm.tensor.mul: 5,
hpvm.tensor.add: 6,
hpvm.tensor.tanh: 4

}
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For every con�guration generated by the accuracy tuner, the �nal accuracy is empirically
evaluated by running the program with the tuned level of error injection. If the measured end-to-
end accuracy is below the threshold, the con�guration is rejected. Otherwise, the con�guration is
saved as a candidate con�guration.

Measuring Success Rate. Since we used statistical error injection to evaluate candidate con-
�gurations, our end-to-end �guarantee� can be probabilistic, at best. Consistent with prior work
in optimistic parallelization [Misailovic et al. 2013], we use statistical testing to determine the
probabilistic guarantee provided by each candidate con�guration. The statistical accuracy test runs
each candidate con�guration with additional random error injection trials, where the magnitude
of error is determined by the selected error knobs. We treat each run as a Bernoulli trial which
succeeds if the execution satis�es the user-de�ned accuracy thresholdT and fails otherwise. For
measuring the success rateRsuccess, we execute each con�guration for 100 runs and accept a
con�guration if the statistical accuracy test has a minimum success rate of 95%.

Hardware-independent objective functions . All remaining candidate con�gurations satisfy
the end-to-end accuracy threshold with a minimum success rateRmin , and can be ranked to achieve
our goal of maximizing energy e�ciency and performance. We use a hardware-independent
objective function to do so, using operation count as a proxy for execution time, and assuming
that higher allowable errors yield better energy e�ciency. Thus, we heuristically compute a cost
functionCT otal of a candidate con�guration as:

CT otal ¹conf igº =
NÕ

i =0

C¹op¹i º;E¹i ºº (1)

The total cost of a con�guration is de�ned as the sum of the cost of each operation at the selected
error knob. The individual operation costs must increase with execution time and decrease as
allowable error increases. We include three alternative objective functions, where we use the error
knobE as a proxy for error:

C1¹op;Eº =
Nc¹opº
logE

C2¹op;Eº =
Nc¹opº

E
C3¹op;Eº =

Nc¹opº
E2 (2)

Here,Nc¹opº computes the total count of multiplication and add operations performed as part of
the higher-level tensor operation,op. Note that the more expensive operations (higherNc¹opº) are
likely to prefer a higher error value, which prefers scheduling these operations for more approximate
hardware, in the hope of achieving higher overall bene�ts. The autotuner generates con�gurations
once for each of the objective functions. We ship the IR with the top 10 con�gurations for each
of the three objective functions, allowing the hardware scheduler to select the best performing
con�guration for the speci�c deployment.

3.2 Accuracy-Aware Scheduling

Given an application in ApproxHPVM along with error normsLe
1 andLe

2 for each tensor operation
in the ApproxHPVM data�ow graph, the goal is to choose the right hardware setting for each
operation. We envision that multiple software and hardware approximate computing techniques
will be available as a choice for each operation. The scheduler attempts to �nd a con�guration that
maximizes energy e�ciency and performance while meeting the individual accuracy constraints
per operation.

Accuracy-aware scheduling presents these challenges:(C1) given error metrics, selecting a
hardware knob corresponding to each operation.(C2)Maximizing energy and/or performance based
on an objective function.(C3) Incurring low runtime cost, thereby enabling dynamic scheduling.
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Approximate Computing Hardware: In this work, we map and compile tensor operations onto
two hardware compute units: an NVIDIA GPU and a programmable mixed-signal accelerator
for machine learning called PROMISE [Srivastava et al. 2018]. Computations are o�oaded to an
NVIDIA GPU using the cuDNN library, which supports both 32-bit (FP32) and 16-bit �oating point
(FP16) operations. FP16 computation reduces execution time and energy by 1.5-4x compared to
FP32, at the cost of reduced accuracy [Ho and Wong 2017; Micikevicius et al. 2018].

The PROMISE accelerator employs in-memory, low signal-to-noise ratio (SNR) analog computa-
tion on the bit lines of an SRAM array to perform faster and energy e�cient matrix operations,
including convolutions, dot-products, vector adds, and others. As shown in [Srivastava et al. 2018],
PROMISE consumes 3.4-5.5x less energy and has 1.4-3.4x higher throughput than application-
speci�c custom digital accelerators, which are themselves known to be orders of magnitude better
in terms of energy-delay product than NVIDIA GPUs. The PROMISE accelerator instruction set has
a parameterswing voltage, which controls the bit-line voltage swing in the accelerator and allows a
trade-o� between accuracy and energy. Theswing parameter can take up to seven di�erent values
giving us seven choices for the PROMISE hardware, denoted in this paper as P1, P2, . . . , P7, in
increasing order of voltage and decreasing error.

Fig. 6. Time and energy improvement, andLe
1 for the

following hardware knobs: FP16, P7, and P1. It can be
seen that PROMISE is faster and less accurate than
FP16, which is faster and less accurate than FP32. Note
that P1 and P7 Time curves overlap since execution
time is constant across di�erent swing values.

For our hardware platform including a GPU
and PROMISE, we have 9 di�erent choices
(FP16, FP32 on GPU and P1-P7 on PROMISE) for
mapping each tensor operation. Figure 6 shows
the speedup, energy reduction, and accuracy of
3 hardware settings � P1, P7, and FP16. These
are measured for a matrix multiplication of ma-
trix M1 of size5000� K and matrixM2 of size
K � 256, whereK 2

�
28; 29; : : : ;215

	
. The ma-

trices are initialized with random values from
uniform distribution U¹ 0;1º. For readability,
we do not show curves for P2-P6, which follow
the same trends as P1 and P7. The left Y-axis
shows speedup and energy reduction over FP32.
The right Y-axis depicts error in the computa-
tion by showingLe

1 of the matrix multiplication
for each hardware setting.

The graph shows that theLe
1 of di�erent hard-

ware settings remains constant for di�erent values ofK. FP16 is most accurate followed by P7 and
P1 in that order. FP16 is slower than P7 and P1 for allK and also consumes more energy than P7
and P1, except for an anomaly forK = 256; 512. As the swing voltage level decreases in PROMISE,
the energy consumption reduces, hence P1 has lower energy than P7. However, the execution
time remains constant across the di�erent swing values in PROMISE, hence P7 and P1 time curves
overlap.

Mapping Le
1 and Le

2 metrics to Hardware Settings: We generated similar graphs to Figure 6 for
all ApproxHPVM tensor operations for each hardware setting FP16, P7, P6, . . .P1. These operations
include tensor multiplication, addition, convolution, activations (tanh, relu, clipped relu), and
window reductions (max-pooling, avg-pooling, min-pooling). We used this data to �nd the maximum
Le

1 andLe
2 constraints tolerable by each hardware setting for each operation. We observed that the

Le
1 andLe

2 metrics for each hardware setting had very little variation across di�erent tensor sizes,
thereby serving as a useful metric for measuring errors in tensor operations. Our backend maps
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a tensor operation to the least accurate hardware setting that meets theLe
1 andLe

2 constraints of
the operation. Since the mapping from individual operation L1 error and L2 error to hardware
knobs is merely a table lookup operation, hardware scheduling is an inexpensive step. This makes
our hardware speci�c mapper very lightweight, which in the future can be used for dynamic
scheduling or for SoC design space exploration. Moreover, our approach is extensible to other
hardware compute units since it merely requires adding a mapping from the hardware-agnostic
approximation metrics to the hardware-speci�c approximation knobs of the target hardware.

3.3 Code Generation

In its �nal phase, the ApproxHPVM compiler generates code for each operation corresponding to
the selected compute unit. We added new backends for PROMISE and for an optimized cuDNN and
cuBLAS based library runtime for GPU. Since the support for backends is �exible, it can be extended
to other approximate computing hardware platforms. The back-end code generators translate
data�ow graph nodes (containing tensor intrinsics such as@hpvm.tensor.mul) to functions that
invoke the corresponding DNN operations for GPU or PROMISE.

Code generation for PROMISE requires an extra pattern-driven fusion operation because the
hardware can perform an entire layer operation as a single PROMISE instruction [Srivastava
et al. 2018]. A layer operation in a DNN usually maps to the following common patterns for
fully-connected and convolution layers, respectively:

YFC = f ¹X � W + Bº YConv = f ¹X ~ W + Bº

whereW, X andB are the weight tensor, input tensor, and bias tensor, andf ¹�º is the activation
function (sigmoid, relu, tanh, etc.). We implement a pattern-driven Node Fusion transformation
that identi�es sequences of nodes performing these operations and fuses the nodes into a single
ApproxHPVM data�ow node if they are all mapped to PROMISE.

4 METHODOLOGY

4.1 Platform
Table 2. System parameters for TX2 and PROMISE.

TX2 Parameters
CPU Cores 6
GPU Cores 2

GPU Frequency 1.12 GHz
DRAM Size 8 GB

DRAM Bandwidth 58.4 GB/s peak; 33 GB/s sustained
DRAM Energy 20 pJ/bit

PROMISE Parameters
Banks 256� 16KB

Frequency 1 GHz

For our experiments, we assume a modern
System-on-Chip (SoC) architecture with
CPUs, GPUs, and accelerators that com-
municate via main memory. The speci�c
system we model is an NVIDIA Jetson TX2
developer kit [NVIDIA 2018], augmented
with the PROMISE programmable machine
learning accelerator [Srivastava et al. 2018].
PROMISE does not exist as real hardware,
and we instead obtained the PROMISE sim-
ulator from its authors and extended it with
a memory timing and energy model.

To model the overall system, one ap-
proach would be to use a cycle-accurate integrated CPU-GPU-PROMISE simulator, but this is
impractical due to several prohibitive limitations of current state-of-the-art GPU simulators such
as GPGPU-Sim. First, they do not support dynamic linking of libraries such as cuDNN and cuBLAS.
Moreover, they do not support newer PTX instructions required by these libraries. Second, re-
gardless of library support, simulator execution is orders of magnitude slower than real hardware,
which makes running real world DNNs and realistic data sets infeasible.
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Instead, we opted for a split approach to model the SoC. We ran the GPU tensor operations on the
real GPU and the PROMISE tensor operations on the PROMISE simulator. Since all communication
between di�erent system agents occurs via main memory, reads/writes to/from main memory
su�ciently model communication between the CPU, GPU, and PROMISE. For instance, if a particular
layer executes on the GPU and the next layer executes on PROMISE, we just assume that PROMISE
obtains all the required data from main memory. Therefore, this approach accurately models the
behavior of a modern SoC architecture.

For our GPU experiments, we used an NVIDIA Jetson TX2 developer kit [NVIDIA 2018]. This
board contains the NVIDIA Tegra TX2 SoC [Franklin 2018], that contains a Pascal-family GPU
with 2 Streaming Multiprocessors (SMs), each with 128 CUDA cores (FP32 ALUs). The board has
the same system architecture as our target SoC. Table 2 lists the relevant characteristics of both
Tegra TX2 and the PROMISE simulator. Finally, due to our split approach, the functional and timing
aspects of our experiments were split as well.

4.2 Functional Experiments

To verify the functional correctness of our generated binaries and to measure the end-to-end
accuracy of each network with di�erent con�gurations, we used the GPU in tandem with PROMISE's
functional simulator. If a layer was mapped to the GPU, the corresponding tensor operations were
executed on the GPU. If a layer was mapped on PROMISE, it was o�oaded to PROMISE's functional
simulator. Consequently, the �nal result was the same as it would be if these operations were all
executed on a real SoC containing both a GPU and PROMISE. Since the PROMISE simulator adds
Gaussian random error to each run, we use statistical testing to measure the fraction of program
runs that satisfy the end-to-end quality metric - we call thisRsuccess. We ran each con�guration
200 times to obtain the mean and standard deviation of the classi�cation accuracy, andRsuccessof
the con�guration.

4.3 Timing Experiments

GPU. To measure the execution time and energy of tensor operations on the GPU, we built a
performance and energy pro�ling tool. While an application is running, the tool continuously reads
GPU and DRAM power from Jetson's voltage rails via an I2C interface [NVIDIA Developer Forums
2018] at 1 KHz (1 ms period). Furthermore, it associates each GPU tensor operation with a begin
and end timestamp pair. Once the application has �nished execution, execution time is calculated
by simply taking the di�erence between the begin and end timestamp of the tensor operation. Then,
energy is calculated by integrating the power readings using 1 ms timesteps.

We used this tool to obtain per-tensor operation time and energy for both FP32 and FP16 for
each benchmark. To obtain reliable results for each operation, we did 100 runs per benchmark,
and used the average time and energy. The coe�cient of variation was less than 1% after 100 runs.
Instead of rerunning an operation on the GPU each time we ran a con�guration, we collected these
results once per benchmark and tabulated them. Then, whenever a particular tensor operation or
network layer was mapped to the GPU, we obtained the required values from this lookup table.

PROMISE.Using the functional simulator obtained from the authors of PROMISE, we built a
timing and energy model for PROMISE. Since the compute and memory access pattern of PROMISE
is knowna priori based on the operation being performed, a cycle-accurate simulator is not required
and analytically computing both time and energy is su�cient. This analytical model �rst calculates
the mapping of input matrices to PROMISE's banks, and then computes the time and energy of
1) loading the data from main memory, 2) performing the computation, and 3) writing data back
to main memory. We extended the baseline PROMISE design with a programmable DMA engine
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Table 3. Description of Evaluated Benchmarks.

(a) DNN Benchmarks, corresponding datasets, layer count, and
classification accuracy with FP32 baseline.

Network Dataset Layers Accuracy
FC-4 MNIST 4 93.72%
LeNet MNIST 4 98.7%

AlexNet CIFAR-10 6 79.16%
AlexNet v2 CIFAR-10 7 85.09%
ResNet-18 CIFAR-10 22 89.44%
VGG-16-10 CIFAR-10 15 89.41%
VGG-16-100 CIFAR-100 15 66.19%
MobileNet CIFAR-10 28 83.69%

Shallow MobileNet CIFAR-10 14 88.4%

(b) Image Processing Benchmarks and corresponding datasets.
The Description shows the composition of filters that forms the
particular image pipeline.

Filter Dataset Description
GEO Caltech 101 Gaussian-Emboss-Outline
GSM Caltech 101 Gaussian-Sharpen-MotionBlur

GEOM Caltech 101 Gaussian-Emboss-Outline-MotionBlur
GEMO Caltech 101 Gaussian-Emboss-MotionBlur-Outline
GSME Caltech 101 Gaussian-Sharpen-MotionBlur-Emboss

(pDMA) [Jamshidi et al. 2014; Komuravelli et al. 2015]. PROMISE operates on INT8 data and requires
a data layout transformation, both of which are handled by pDMA. All the required data is loaded
into PROMISE before starting the computation.

For the compute model, we used the pipeline parameters obtained from the authors of
PROMISE [Gonugondla et al. 2018]. For the main memory model, we empirically measured peak
sustained bandwidth and energy per bit on our Jetson TX2 development board to ensure that both
PROMISE and the GPU used the same memory system. The DRAM energy reported by PROMISE
and the energy measured on Jetson TX2 was highly correlated, validating our model.

Integration. Similar to the functional experiments, we obtained the total time and energy for a
network by summing the time and energy of each layer. If the layer was scheduled on PROMISE,
PROMISE's timing and energy simulator was invoked to get the time and energy. If the layer was
scheduled on the GPU, a lookup was performed on the FP32/FP16 time and energy tables that were
generated after pro�ling. If consecutive operations required a di�erent precision, quantization
was performed and its time and energy overhead was added to the total. PROMISE performed
quantization internally while a CUDA kernel performed quantization for the GPU.

4.4 Benchmarks

Our evaluation includes 9 DNN benchmarks and 5 image processing pipelines, detailed in Table 3a
and Table 3b, respectively.

DNN Benchmarks. We include a range of di�erent convolutional neural networks for 3 di�erent
datasets: MNIST [LeCun et al. 1998], CIFAR-10, and CIFAR-100 [Krizhevsky and Hinton 2009]. The
MNIST dataset includes 60K grey-scale images of handwritten digits 0 through 9. The CIFAR-10
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dataset contains 60K3 � 32� 32sized color images belonging to 10 classes, 6K images per class.
CIFAR-100 includes 60K3 � 32� 32sized color images belonging to 100 distinct classes, with
600 images belonging to each class. For each of the three datasets, the dataset is divided into 50K
images for training and 10K for inference. The inference set is divided equally into calibration
and validation sets (5K each). The calibration set is used for the autotuning phase that identi�es
approximable computations, and the validation set is used for evaluating the performance, energy,
and accuracy of each autotuned con�guration (combination of hardware knobs). We use popular
DNN benchmarks including LeNet[LeCun et al. 1989], AlexNet [Krizhevsky et al. 2012] (reference
implementation [Yang 2019]), ResNet-18 [He et al. 2016], VGG-16 [Simonyan and Zisserman
2014] (reference implementation [Geifman 2019]), MobileNet [Howard et al. 2017], and Shallow
MobileNet [Howard et al. 2017]. We trained VGG-16 for both CIFAR-10 and CIFAR-100 since it
has been shown to provide relatively good end-to-end accuracy on both the datasets [Geifman
2019]. We also created a variant of Alexnet (called Alexnet v2) that includes an extra convolution
layer (a total of 6 convolution layers) and provides approximately 6% higher end-to-end accuracy.
We include MobileNet which is an e�cient DNN model with respect to both performance and
model size. We also include a shallow version of the original MobileNet architecture (similar to the
shallow model proposed in the original work) called Shallow MobileNet that includes 14 layers
as opposed to 28 layers in the full MobileNet model. Shallow MobileNet provides approximately
5% higher accuracy on CIFAR-10 compared to the full MobileNet model, because for CIFAR-10,
which involves small images and only 10 classes, the larger network is prone to over�tting. We
also include a 4 layer fully-connected DNN, called FC-4, trained on the MNIST dataset.

Image Processing Benchmarks. We also include 5 convolution-based image processing bench-
marks (Table 3b). We construct these benchmarks by including di�erent combinations of commonly-
used image �lters: Gaussian (G), Emboss (E), Outline (O), MotionBlur (M), and Sharpen (S). At the
IR level, the �lters are represented as tensor convolutions, with the exception of Emboss which is
a convolution followed by a bias add operation. To evaluate the �lters, we used the Caltech 101
dataset [Fei-Fei et al. 2004] that includes a set of 9145 images. The dataset includes a mix of small
and large images, so we resized all the images to240� 300pixels to allow running the �lters on a
batch of images. We converted the color images to grey-scale since our cuDNN-based backend does
not support convolution on separate RGB channels. For evaluation, we split the images into two
sets of 4572 images for calibration and validation. The calibration set is used by the autotuning step,
and the validation set is used to evaluate the average PSNR and violation rate of each con�guration
provided by the autotuner.

4.5 �ality Metrics

For the DNN benchmarks, we studied an accuracy loss of 1% (Loss1%) and 2% (Loss2%). Loss1%refers
to an accuracy degradation of 1% with respect to the baseline andLoss2%refers to an accuracy
degradation of 2% compared to the baseline. The baseline uses FP32 for all computations with no
approximation.

For the image processing benchmarks, we use PSNR to quantify the error in the output of
the processed image in comparison to the baseline. We use two PSNR loss thresholds of 30db
(PSNR30) and 20db (PSNR20). (Quality loss of about 20-25dB is considered to be acceptable in
lossy situations, such as wireless transmission [Li and Cai 2007; Thomos et al. 2006].) To illustrate
the visual impact, Figure 7 shows the impact of such losses between for the output of the GSM
pipeline applied to a sample image, at "exact" (FP32 precision on the GPU), and with additional
losses ofPSNR30, andPSNR20 due to approximations. The GSM pipeline introduces noticeable
blur without approximations. PSNR 32.2 dB only causes a small perceptible di�erence in the image,
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